APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (1): 11-22    DOI: 10.1007/s11770-014-0478-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于各向异性致密砂岩油储层的地震岩石物理建模及脆性指数研究
黄欣芮1,黄建平1,李振春1,杨勤勇2,孙启星1,崔伟1
1. 中国石油大学(华东)地球科学与技术学院,山东青岛 266580
2. 中国石油化工股份有限公司石油物探技术研究院,江苏南京 211103
Brittleness index and seismic rock physics model for anisotropic tight-oil sandstone reservoirs
Huang Xin-Rui1, Huang Jian-Ping1, Li Zhen-Chun1, Yang Qin-Yong2, Sun Qi-Xing1, and Cui Wei1
1. School of Geoscience of China University of Petroleum (East China), Qingdao 266580, China.
2. Sinopec Geophysical Research Institute, Nanjing 211103, China.
 全文: PDF (1749 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 致密砂岩油储层的脆性研究是致密砂岩油地震预测的重要内容,需要引入合适的脆性指数来建立致密砂岩油储层的脆性评价标准。本文首先构建了各向异性致密砂岩油地震岩石物理模型;依据该模型进行了各向异性介质弹性常数的脆性敏感性分析,建立了新的脆性指数;并分别从脆性敏感性定量分析、岩石物理响应特征分析以及交汇图分析三个方面系统研究了新脆性指数在致密砂岩油脆性预测上的适用性。分析结果表明,新脆性指数较其它传统脆性指数,不仅其脆性敏感性高,而且更适合于致密砂岩油储层“甜点”区的脆性预测。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄欣芮
黄建平
李振春
杨勤勇
孙启星
崔伟
关键词脆性指数   致密砂岩油   地震岩石物理模型   脆性敏感性分析   各向异性     
Abstract: Brittleness analysis becomes important when looking for sweet spots in tight-oil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock physics model for tight-oil sandstone reservoirs with vertical fractures. Because of the complexities in lithology and pore structure and the anisotropic characteristics of tight-oil sandstone reservoirs, the proposed model is based on the solid components, pore connectivity, pore type, and fractures to better describe the sandstone reservoir microstructure. Using the model, we analyze the brittleness sensitivity of the elastic parameters in an anisotropic medium and establish a new brittleness index. We show the applicability of the proposed brittleness index for tight-oil sandstone reservoirs by considering the brittleness sensitivity, the rock physics response characteristics, and cross-plots. Compared with conventional brittleness indexes, the new brittleness index has high brittleness sensitivity and it is the highest in oil-bearing brittle zones with relatively high porosity. The results also suggest that the new brittleness index is much more sensitive to elastic properties variations, and thus can presumably better predict the brittleness characteristics of sweet spots in tight-oil sandstone reservoirs.
Key wordsbrittleness index   tight-oil sandstone reservoirs   seismic rock physics model   brittleness sensitivity   anisotropy   
收稿日期: 2014-12-21;
基金资助:

本研究由国家973课题(编号:2014CB239006和2011CB202402),国家自然科学基金(编号:41104069和41274124),中石化课题(编号:KJWX2014-05),中央高校科研业务费专项基金(编号:R1401005A)联合资助。

引用本文:   
黄欣芮,黄建平,李振春等. 基于各向异性致密砂岩油储层的地震岩石物理建模及脆性指数研究[J]. 应用地球物理, 2015, 12(1): 11-22.
Huang Xin-Rui,Huang Jian-Ping,Li Zhen-Chun et al. Brittleness index and seismic rock physics model for anisotropic tight-oil sandstone reservoirs[J]. APPLIED GEOPHYSICS, 2015, 12(1): 11-22.
 
[1] Ba, J., Carcione, J. M., and Nie, J. X., 2011, Biot-Rayleigh theory of wave propagation in double-porosity media: Geophys. Res., 116, B06202.
[2] Ba, J., Cao, H., Yao, F. C., Nie, J. X., and Y, H. Z., 2008, Double-porosity rock model and squirt flow in the laboratory frequency band: Applied Geophysics, 5(4), 261−276.
[3] Berryman, J. G., 1995, Mixture theories for rock properties, in Washington, D. C. Ed., a handbook of physical constants: American Geophysical Union, 205−228.
[4] Berryman, J. G., 1980, Long-wavelength propagation in composite elastic media: The Journal of the Acoustical Society of America, 68(6), 1820−1831.
[5] Brown, R., Korringa, J., 1975, On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid: Geophysics, 40(4), 608−616.
[6] Cai, B., Ding, Y. H., Lu, Y. J., Wang, X. D., Yang, Z. D., Sun, H., and Wu, G. H., 2012, Study of Rock Brittleness for Stimulated Reservoir Volume Fracture Technology: Journal of Chongqing University of Science and Technology (National Sciences Edition) (in Chinese), 14(5), 86−88.
[7] Chen, J. J., Zhang, G. Z., Chen, H. Z., and Yin, X. Y., 2014, The construction of Shale rock physics effective model and prediction of rock brittleness: 84th A Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 2861−2865.
[8] Diao, H. Y., 2013, Rock mechanical properties and brittleness evaluation of shale reservoir: Acta Petrologica Sinica (in Chinese), 29(9), 3300−3306.
[9] Fu, J. H., Deng, X. Q., Zhang, X. L., Luo, A. X., and Nan, Q. X., 2013, Relationship between deepwater sandstone and tight oil of the Triassic Yanchang Formation in Ordos Basin: Journal of Palaeogeography (in Chinese), 15(5), 0624−0634.
[10] Guo, Z. Q., Chapman, M., and Li, X. Y., 2012a., A shale rock physics model and its application in the predictin of brittleness index, mineralogy, and porosity of the Barnet Shale: 82nd A Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 1−5.
[11] Guo, Z. Q., Chapman, M., and Li, X. Y., 2012b, Exploring the effect of fractures and microstructure on brittleness index in the Barnett Shale: 82nd A Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 1−5.
[12] Goodway, B., Perez, M., Varsek, J., and Abaco, C., 2010, Seismic petrophysics and isotropic-anisotropic AVO methods for unconventional gas exploration: The Leading Edge, 29(12), 1500−1508.
[13] Grieser, B., and Bray, J., 2007, Identification of production potential in unconventional reservoirs: Proceedings of the Annual Technical Conference and Exhibition, Society of Petroleum Engineers, SPE 106623.
[14] Gassmann, F., 1951, Uber die Elastizita porooser Mddien: Vier. der Natur. Gesellschaft in Zurich, 96, 1-23.
[15] Jia, C. Z., Zhou, C. N., Li, J. Z., Li, D. H., Z, M., 2012, The evaluation standard, main types, basic characteristics and resources Prospect of the china’s tight oil: Acta Petrolei Sinica (in Chinese), 33(3), 343−340
[16] Kuster, G. T., and Toksoz, M. N., 1974, Velocity and attenuation of seismic waves in two phase media: Part 1, Theoretical formulation: Geophysics, 39(5), 587−606.
[17] Li, Z. P., H, F. Y., He, X. W., Zang, W. L., and He, Y. T,. 2014, Shale-gas reservoir-prediction study in Daanzhai, Eastern Sichuan Basin: The Leading Edge, 526−534.
[18] Mavko, G., T. Mukerji, and J. Dvorkin, 2009, The rock physics handbook: Tools for seismic analysis of porous media.: Cambridge University Press.
[19] Perez, R., and Marfurt, K., 2013, Brittleness estimation from seismic measurements in unconventional reservoirs: Application to the Barnett Shale: 83rd A Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 2258−2263.
[20] Ruiz, F., and Azizov, I., 2011, Fluid substitution in tight shale using the soft-porosity model: 81st A Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 2272−2276.
[21] Ruiz, F., and Cheng, A., 2010, A rock physics model for tight gas sand: The Leading Edge, 1484−1489.
[22] Rickman, R., Mullen, M., Petre, E., Grieser, B., and Kundert, D., 2008, A Practical Use of Shale Petrophysics for Stimulation Design Optimization: All Shale Plays Are Not Clones of the Barnett Shale: Proceedings of the Annual Technical Conference and Exhibition, Society of Petroleum Engineers, SPE 115258.
[23] Sharma, R., and Chopra, S., 2012, New attribute for determination of lithology and brittleness: 82nd A Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 1−5.
[24] Sun, C. Y., 2007, Theory and Methods of Seismic Waves. Dong Ying: China University of Petroleum of Press.
[25] Tian, J. F., Gao, Y. L., Zhang, P. B., Wang, X. J., and Yang, Y. Y., 2013, Genesis of illite in Chang 7 tight oil reservoir in Heshui area, Ordos Basin: Oil & Gas Geology (in Chinese), 34(5), 700−707.
[26] Wang, P., Wu, G. C., Dai, R. H., and Zhang, W. X., 2014, A new rock physics model for tight reservoirs: 84th A Ann. Internat Mtg., Soc. of Expl. Geophys., Expanded Abstract, 2931−2935.
[27] Wu, G. C., 2006, Seismic wave propagation and imaging of anisotropic medium. Dong Ying: China University of Petroleum of Press, Dongying, Shangdong.
[28] Xu, S., White, R. E., 1996, A physical model for shear-wave velocity prediction: Geophysical Prospecting, 44(5), 687-717.
[29] Yang, R. Z., Zhao, Z. G., Pang, H. L., Li, C. C., and Chou, N. G., 2012, The controlling factors and the methods of earthquake prediction of the geological enrichment zone of shale gas: Earth Science Frontiers, 19(5), 339-347.
[30] Zhou, F., Ma, Z., and Li, C., 2014, An effective model for tight gas sands: CPS/SEG Beijing 2014 International Geophysical Conference, 993−995.
[31] Zhou, S. S., Yi, W., Hao, Z. B., Huang, W. Q., and Wu, X. Y., 2012, Experiment research and application of fluid sensitive attribute based on the prestack inversion: Chinese J. Geophys (in Chinese), 55(6), 1985−1992.
[32] Zhu, R. K., Bai, B., et al., 2013, Research advances of microstructure in unconventional tight oil and gas reservoir: Journal of Palaeogeography (in Chinese), 15(5), 615−623.
[1] 王玲玲,魏建新,黄平,狄帮让,张福宏. 多尺度裂缝储层地震预测方法研究[J]. 应用地球物理, 2018, 15(2): 240-252.
[2] 郭桂红,闫建萍,张智,José Badal,程建武,石双虎,马亚维. 流体饱和孔隙定向裂缝储层中地震波衰减的模拟分析[J]. 应用地球物理, 2018, 15(2): 311-317.
[3] 闫丽丽,程冰洁,徐天吉,江莹莹,马昭军,唐建明. HTI介质PS波叠前偏移及各向异性校正方法应用研究[J]. 应用地球物理, 2018, 15(1): 57-68.
[4] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[5] 钱恪然,何治亮,陈业全,刘喜武,李向阳. 各向异性富有机质页岩的岩石物理建模及脆性指数研究[J]. 应用地球物理, 2017, 14(4): 463-480.
[6] 黄威,贲放,殷长春,孟庆敏,李文杰,廖桂香,吴珊,西永在. 三维时间域航空电磁任意各向异性正演模拟[J]. 应用地球物理, 2017, 14(3): 431-440.
[7] 黄鑫,殷长春,曹晓月,刘云鹤,张博,蔡晶. 基于谱元法三维航空电磁电各向异性模拟及识别研究[J]. 应用地球物理, 2017, 14(3): 419-430.
[8] 苏本玉,岳建华. 煤层导水裂缝带电各向异性特征研究[J]. 应用地球物理, 2017, 14(2): 216-224.
[9] 方刚,巴晶,刘欣欣,祝堃,刘国昌. 基于时间辛格式的傅里叶有限差分地震波场正演[J]. 应用地球物理, 2017, 14(2): 258-269.
[10] 宋连腾,刘忠华,周灿灿,俞军,修立军,孙中春,张海涛. 致密砂岩弹性各向异性特征及影响因素分析[J]. 应用地球物理, 2017, 14(1): 10-20.
[11] 刘喜武,郭智奇,刘财,刘宇巍. 四川盆地龙马溪组页岩气储层各向异性岩石物理建模及应用[J]. 应用地球物理, 2017, 14(1): 21-30.
[12] 何怡原,胡天跃,何川,谭玉阳. TI介质中的P波衰减各向异性及其在裂缝参数反演中的应用[J]. 应用地球物理, 2016, 13(4): 649-657.
[13] Sergey Yaskevich, Georgy Loginov, Anton Duchkov, Alexandr Serdukov. 强各向异性介质的微地震数据反演的陷阱[J]. 应用地球物理, 2016, 13(2): 326-332.
[14] 郭智奇,刘财,刘喜武,董宁,刘宇巍. 基于岩石物理模型的页岩油储层各向异性研究[J]. 应用地球物理, 2016, 13(2): 382-392.
[15] 殷长春,张平,蔡晶. 海洋直流电阻率法各向异性正演模拟研究[J]. 应用地球物理, 2016, 13(2): 279-287.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司