APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (1): 1-10    DOI: 10.1007/s11770-014-0477-1
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
孔隙结构对致密碳酸盐岩地震岩石物理特征的影响分析
潘建国1,王宏斌1,李闯1,赵建国2
1. 中国石油勘探开发研究院西北分院,兰州 730020
2. 中国石油大学(北京)地球物理与信息工程学院,北京 102249
Effect of pore structure on seismic rock-physics characteristics of dense carbonates
Pan Jian-Guo1,  Wang Hong-Bin1,  Li Chuang1, and Zhao Jian-Guo2
1. Northwest Branch of PetroChina Exploration and Development Research Institute, Lanzhou 730020, China.
2. College of Geophysics and Information Engineering, China University of Petroleum, Beijing 102249, China.
 全文: PDF (921 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 塔里木盆地奥陶系鹰山组碳酸盐岩在成岩和后成岩过程孔中形成了较为复杂的孔隙结构特征,其速度等地震弹性参数不仅与孔隙度有关,而且还与孔隙结构特征密切相关。本文对取自塔中碳酸盐岩样品进行了岩石物理测试, 从铸体薄片数字图像处理中提取了反映样品孔隙结构的平均比表面、平均孔喉半径、孔隙圆度以及平均纵横比等特征参数。研究表明,平均高速度样品具有低平均比表面、高平均孔喉半径和高均纵横比的特征。 由于致密碳酸盐岩样品的孔隙结构差异引起流体相关速度频散作用的不同,然而速度频散与平均比表面和平均纵横比之间没有线性关系,在平均比表面较高或者较低时,岩石样品孔隙结构较为均匀致使喷射流作用相对较弱,造成超声测量结果接近于Gassmann方程预测结果;而当刚度较大的溶蚀(铸模)孔隙与刚度较小的微裂隙共存于岩石样品中,流体相关速度频散作用明显,造成测量纵波速度结果与Gassmann方程预测结果存在较大差异。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘建国
王宏斌
李闯
赵建国
关键词孔隙结构   致密碳酸盐岩   岩石物理特征     
Abstract: The Ordovician carbonate rocks of the Yingshan formation in the Tarim Basin have a complex pore structure owing to diagenetic and secondary structures. Seismic elastic parameters (e.g., wave velocity) depend on porosity and pore structure. We estimated the average specific surface, average pore-throat radius, pore roundness, and average aspect ratio of carbonate rocks from the Tazhong area. High P-wave velocity samples have small average specific surface, small average pore-throat radius, and large average aspect ratio. Differences in the pore structure of dense carbonate samples lead to fluid-related velocity variability. However, the relation between velocity dispersion and average specific surface, or the average aspect ratio, is not linear. For large or small average specific surface, the pore structure of the rock samples becomes uniform, which weakens squirt flow and minimizes the residuals of ultrasonic data and predictions with the Gassmann equation. When rigid dissolved (casting mold) pores coexist with less rigid microcracks, there are significant P-wave velocity differences between measurements and predictions.
Key wordsCarbonate rocks   pore structure   elastic parameters   microstructure   Tarim Basin   
收稿日期: 2014-12-22;
基金资助:

本研究由国家自然科学基金(编号:41274138)资助。

引用本文:   
潘建国,王宏斌,李闯等. 孔隙结构对致密碳酸盐岩地震岩石物理特征的影响分析[J]. 应用地球物理, 2015, 12(1): 1-10.
Pan Jian-Guo,Wang Hong-Bin,Li Chuang et al. Effect of pore structure on seismic rock-physics characteristics of dense carbonates[J]. APPLIED GEOPHYSICS, 2015, 12(1): 1-10.
 
[1] gersborg, R., Johansen, T. A., Jakobsen, M., Sothcott, J., and Best, A., 2008, Effects of fluids and dual-pore systems on pressure-dependent velocities and attenuations in carbonates: Geophysics, 73(5), N35-N47.
[2] Anselmetti, F. S. and Eberli, G. P., 1993, Controls on sonic velocity in carbonates: Pure and Applied Geophysics, 141, 287-323.
[3] Anselmetti, F. S., and Eberli, G. P., 1999, The velocity-deviation log: A tool to predict pore type and permeability trends in carbonate drill holes from sonic and porosity or density logs: AAPG Bulletin, 83, 450-466.
[4] Ba, J., Carcinoe, J. M., and Nie, J. X., 2011, Biot-Rayleigh theory of wave propagation in double-porosity media: Journal of Geophysical Research-solid earth, 116, B06202.
[5] Ba,J.,Cao, H., Carcione,J.M., Tang, G., Yan, X. F., Sun, W. T., and Nie,J.X.,2013, Multiscale rock-physics templates for gas detection in carbonate reservoirs: Journal of Applied Geophysics, 93, 77-82.
[6] Baechle, G. T., Al-Kharusi, L., and Eberli, G. P., 2007, Effect of spherical pore shapes on acoustic properties: AAPG Annual Convention, Abstracts Volume, 16, 7.
[7] Baechle, G. T., Colpaert, A., Eberli, G. P., and Weger, R., 2008, Effects of microporosity on sonic velocity in carbonate rocks: The Leading Edge, 27(8), 1012-1018.
[8] Deng, J. X., Qu, S. L., and Wang, S. X., 2012, P-wave attenuation and dispersion in a porous medium permeated by aligned fractures-a new poroelastic approach: Journal of Geophysics and Engeerning, 9(2), 115−26.
[9] Gurevich, B., Makarynska, D., Paula, O., and Pervukhina, M., 2010, A simple model for squirt-flow dispersion and attenuation in fluid-saturated granular media: Geophysics, 75, N109-N120.
[10] Liu, S. G., Shan, Y. M., and Huang, S. J., 2006, Characteristics and variation pattern of acoustic parameters of carbonate reservoir rocks in Tahe oil field Tarim basin: Oil & Gas Geology, 27(3), 399−404.
[11] Müller, T. B., Gurevich, B., and Lebedev, M., 2010, Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks—a review: Geophysics, 75, 75A147-75A164.
[12] Nie, J. X., Ba, J., Yang, D. H., Yan, X. F., Yuan, Z. Y. and Qiao, H. P., 2012, BISQ model based on a Kelvin-Voigt viscoelastic frame in a partially saturated porous medium: Applied Geophysics, 12(2), 213-222.
[13] Sharma, R., Prasad, M., Batzle, M., and Vega, S., 2013, Sensitivity of flow and elastic properties to fabric heterogeneity in carbonates: Geophysical Prospecting, 61, 270-286.
[14] Verwer, K., Eberli, G., Baechle, G., and Weger, R., 2010, Effect of carbonate pore structure on dynamic shear moduli: Geophysics, 75(1), E1-E8.
[15] Walsh, J. B., 1965, The effects of cracks on the compressibility of rock: JournalofGeophysicalResearch, 70, 381−389.
[16] Weger, R. J., Baechle, G. T., Masaferro, J. L., and Eberli, G. P., 2004, Effects of pore structure on sonic velocity in carbonates: 74th Ann. Internat. Mtg, Soc. Expl. Geophys.,, Expanded Abstracts, 1774.
[17] Xu, S. Y. and Payne, M. A., 2009, Modeling elastic properties in carbonate rocks: The Leading Edge, 28(2), 66-74.
[18] Zhou, W. and Yang, H. X., 2006, Effects of fractures of rock on elastic property of rock and velocity-porosity relation: Oil Geophysical Prospecting, 40(3), 334−338.
[1] 马汝鹏,巴晶,Carcione J. M. ,周欣,李帆. 致密油岩石纵波频散及衰减特征研究:实验观测及理论模拟*[J]. 应用地球物理, 2019, 16(1): 36-49.
[2] 刘允隆,张元中,王拥军,王李庚. 川中侏罗系自流井组大安寨段致密灰岩孔隙结构实验研究[J]. 应用地球物理, 2018, 15(2): 165-174.
[3] 闫建平,何旭,耿斌,胡钦红,冯春珍,寇小攀,李兴文. 核磁共振T2谱多重分形特征及其在孔隙结构评价中的应用[J]. 应用地球物理, 2017, 14(2): 205-215.
[4] 李生杰, 邵雨, 陈旭强. 碳酸盐岩储层各向异性岩石物理建模与孔隙结构分析[J]. 应用地球物理, 2016, 13(1): 166-178.
[5] 边环玲, 关雎, 毛志强, 鞠晓东, 韩桂琴. 孔隙结构对储层电性及测井解释评价的影响[J]. 应用地球物理, 2014, 11(4): 374-383.
[6] 蒋炼, 文晓涛, 周东红, 贺振华, 贺锡雷. 碳酸盐岩孔隙结构参数构建与储层参数反演[J]. 应用地球物理, 2012, 9(2): 223-232.
[7] 李潮流, 周灿灿, 李霞, 胡法龙, 张莉, 王伟俊. 一种评价致密砂岩储层孔隙结构的新方法及其应用[J]. 应用地球物理, 2010, 7(3): 283-291.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司