APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2009, Vol. 6 Issue (4): 385-392    DOI: 10.1007/s11770-009-0043-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
非线性地震属性在煤矿奥陶系灰岩含水性预测中的应用研究
黄亚平1,董守华2,耿建华1
1. 同济大学海洋与地球科学学院,上海 200092
2. 中国矿业大学资源与地球科学学院,徐州 221008
Ordovician limestone aquosity prediction using nonlinear seismic attributes: Case from the Xutuan coal mine
Huang Ya-Ping1, Dong Shou-Hua2, and Geng Jian-Hua1
1. School of Ocean and Earth Science, TongJi University, Shanghai 200092, China.
2. School of Resource and Earth Science, China University of Mining and Technology, Xuzhou 221008, China.
 全文: PDF (809 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 奥陶系灰岩水是中国北方地区煤矿突水的主要来源。本文介绍了利用熵、最大李氏指数及分形分维等三种非线性地震属性预测奥陶系灰岩含水的方法,分析了这三种属性的提取和应用。以许疃煤矿81、82采区为例,利用上述单属性及多属性综合分析,预测许疃煤矿81、82采区可能的奥陶系灰岩含水区域。实际应用表明,非线性地震属性是奥陶系灰岩含水性预测的有效工具。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄亚平
董守华
耿建华
关键词非线性地震属性   灰岩   含水性   预测     
Abstract: Ordovician limestone water is the main source of water inrush in North China coal mines. In this paper, we analyze the characteristic of three kinds of nonlinear seismic attributes, such as  the largest lyapunov exponent,fractal dimension and entropy and introduce their calculation methods. Taking the 81st and 82nd coal districts in the Xutuan coal mine as examples, we extract the three seismic attributes based on the 3D prestack migration seismic data of this area, which can display the Ordovician limestone fracture distribution in the mine. We comprehensively analyzed the three nonlinear seismic attributes and compared the results with transient electromagnetic exploration results and determined the possible Ordovician limestone aquosity distribution. This demonstrated that the nonlinear seismic attributes technology is an effective approach to predict the aquosity of Ordovician limestone.
Key wordsnonlinear seismic attribute   limestone   aquosity   prediction   
收稿日期: 2009-01-11;
引用本文:   
黄亚平,董守华,耿建华. 非线性地震属性在煤矿奥陶系灰岩含水性预测中的应用研究[J]. 应用地球物理, 2009, 6(4): 385-392.
HUANG Ya-Ping,DONG Shou-Hua,GENG Jian-Hua. Ordovician limestone aquosity prediction using nonlinear seismic attributes: Case from the Xutuan coal mine[J]. APPLIED GEOPHYSICS, 2009, 6(4): 385-392.
 
[1] Chopra, S., and Marfurt, K. J., 2005, Seismic attributes: a historical perspective: Geophysics, 70(5), 3SO - 28SO.
[2] Chopra, S., and Marfurt, K. J., 2006a, Curvature attribute applications to 3D surface seismic data: CSEG Recorder, 31(7), 44 - 56.
[3] Chopra, S., and Marfurt, K. J., 2006b, Seismic attributes: a promising aid for geological prediction: CSEG Recorder (Special Edition), 115 - 126.
[4] Chopra, S., and Marfurt, K. J., 2007, Volumetric curvature attributes for fault/fracture characterization: First Break, 25,19 - 30.
[5] Dong, S. H., Ma, Y. L., and Zhou, M., 2004, Forward modeling of relationship between coal seam thickness and seismic attribute of amplitude and frequency: Journal of China University of Mining and Technology, 33(1), 29 - 32.
[6] Dong, S. H., 2008, Test on elastic anisotropic coefficients of gas coal: Chinese Journal of Geophysics, 51(3), 254 - 259.
[7] Ge, L. T., and Ye, G. J., 2001, Hydrogeology of China Coal: Coal Industry Press, Beijing, China.
[8] Guo, G. M., 2005, The research and application of the seismic attributes-in the region of Zhaohu nose-like structure of Weibei: PhD Thesis, Southwest Petroleum Institute.
[9] Gui, Z. H., and Han, F. Q., 2004, Wavelet packet-maximum entropy spectrum estimation and its application in turbine’s fault diagnosis: Automation of Electric Power Systems, 28(2), 62 - 66.
[10] Grassberger, P., and Procaccia, I., 1983, Estimation of the Kolmogorov entropy from a chaotic signal: Physical Review Letters, 28, 2591 - 2593.
[11] Kantz, H., 1994, A robust method to estimate the maximal Lyapunov exponent of a time series: Physics Letters A, 185(1), 77 - 87.
[12] Lawrence, P., 1998, Seismic attributes in the characterization of small-scale reservoir faults in Abqaiq Field: The Leading Edge, 17, 521 - 525.
[13] Li, X. R., and Meng, X. D., 2004, Study on fractured karst zone with seismological method: North China Earthquake Sciences, 22(4), 11 - 12.
[14] Liu, J. L., and Marfurt, K. J., 2007, Instantaneous spectral attributes to detect channels: Geophysics, 72, 23 - 31.
[15] Liu, X. B., Lin, J. C., and Liu, C. M., 2002, Present conditions and prospects of the researches on seismic reservoir: Acta Geoscientia Sinica, 23(1), 73 - 78.
[16] Lue, Y. X., 2001, Studying geological significance of seismic attributions use the model technology: Geophysical and Gochemical Exploration, 25(3), 191 - 197.
[17] Rosenstein, M. T., Collins, J. J., and De Luca, C. J., 1993, A practical method for calculating largest Lyapunov exponents from small data sets: Physica D, 65(1/2), 117 - 133.
[18] Sukmono, S., 2007, Application of multi-attribute analysis in mapping lithology and porosity in the Pematang-Sihapas groups of Central Sumatra Basin, Indonesia: The Leading Edge, 26(2), 120 - 131.
[19] Wang, Y. G., Li, Z. C., and Shao, Y., 2000, Reservoirs using seismic data predict fracture zone: Petroleum University (Natural Science Edition), 24(4), 79 - 82.
[20] Wang, Y. H., and Wen, S., 1996, China coal mine flood prevention and control. Beijing: Coal Industry Press, China, 95 - 110.
[21] Wu, D. K., 1995, Fractal, chaos and catastrophe theory predict oil and gas and applied research: PhD Thesis, Chengdu University of Technology.
[22] Xu, C. B., Qian, J., and Sun, L. X., 2008, Research on seismic interpretation method of karst - fractured zone: Chinese Journal of Engineering Geophysics, 5(2), 940 - 151.
[23] Yang, D. Q., Jie, M. X., and Wang, Z., 2002, The possibility of detecting water in the Ordovician carbonate with objective seismic exploration: Journal of Coal Society, 27(1), 36 - 40.
[24] Yi, C. X., 1995, Nonlinear science and its application in the geosciences: Meteorological Press, Beijing, 14 - 32.
[25] Zhang, X. D., 1996, Time series analysis of the higher-order statistics method: Tsinghua University Press, Beijing, 1 - 80.
[1] 王德营,孔雪,董烈乾,陈立华,王永军,王晓晨. 一种非白噪反射系数序列的预测反褶积方法*[J]. 应用地球物理, 2019, 16(1): 109-123.
[2] 马琦琦,孙赞东. 基于叠前PP-PS波联合广义线性反演的弹性模量提取方法[J]. 应用地球物理, 2018, 15(3-4): 466-480.
[3] 刘允隆,张元中,王拥军,王李庚. 川中侏罗系自流井组大安寨段致密灰岩孔隙结构实验研究[J]. 应用地球物理, 2018, 15(2): 165-174.
[4] 王玲玲,魏建新,黄平,狄帮让,张福宏. 多尺度裂缝储层地震预测方法研究[J]. 应用地球物理, 2018, 15(2): 240-252.
[5] 赵玉敏,李国发,王伟,周振晓,唐博文,张文波. 基于数据驱动和反演策略的时空域随机噪声衰减方法[J]. 应用地球物理, 2017, 14(4): 543-550.
[6] 孔雪,王德营,李振春,张瑞香,胡秋媛. 平面波预测滤波分离绕射波方法研究[J]. 应用地球物理, 2017, 14(3): 399-405.
[7] 罗伟平,李洪奇,石宁. 半监督最小二乘支持向量机的研究及其在海上油田储层预测中的应用[J]. 应用地球物理, 2016, 13(2): 406-415.
[8] 陈双全, 曾联波, 黄平, 孙绍寒, 张琬璐, 李向阳. 多尺度裂缝综合预测应用研究[J]. 应用地球物理, 2016, 13(1): 80-92.
[9] 马彦彦, 李国发, 王峣钧, 周辉, 张保江. F-X域复数经验模态分解去噪方法[J]. 应用地球物理, 2015, 12(1): 47-54.
[10] Stuart Crampin, 高原. 两种类型微裂隙[J]. 应用地球物理, 2014, 11(1): 1-8.
[11] Pijush Samui, and Dookie Kim. 利用支持向量机和高斯过程回归测定水库诱发地震[J]. 应用地球物理, 2013, 10(2): 229-234.
[12] 刘灵, 耿建华, 郭彤楼. 横波速度预测的边界加权平均法[J]. 应用地球物理, 2012, 9(4): 421-428.
[13] 张佳佳, 李宏兵, 姚逢昌. 岩石的临界孔隙度反演及横波预测[J]. 应用地球物理, 2012, 9(1): 57-64.
[14] 贺芙邦, 游俊, 陈开远. 基于岩石物理分析的叠前弹性反演预测含气砂岩分布[J]. 应用地球物理, 2011, 8(3): 197-205.
[15] 孙鲁平, 郑晓东, 李劲松, 首皓, 李艳东. 基于频率域峰值属性的河道砂体定量预测及应用[J]. 应用地球物理, 2010, 6(1): 10-17.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司