APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (4): 479-488    DOI: 10.1007/s11770-014-0453-1
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
子波相位不准对叠前波形反演的影响
骆春妹1,2,王尚旭1,2,袁三一1,2
1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249
2. 中国石油大学(北京)CNPC 物探重点实验室,北京 102249
Effect of inaccurate wavelet phase on prestack waveform inversion
Luo Chun-Mei1,2, Wang Shang-Xu1,2, and Yuan San-Yi1,2
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China.
2. CNPC Key Laboratory of Geophysical Exploration, China University of Petroleum, Beijing 102249, China.
 全文: PDF (1349 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 子波是影响反演结果的关键因素之一。不正确的子波相位会改变目标函数的形态,导致反演结果收敛不到真实的位置,最终引起解释结果发生偏差甚至错误。基于两个简单模型,在忽略所有其它影响因素前提下,本文研究了子波依赖于频率的相位变化对叠前波形反演的影响,并对反演误差进行量化分析。实验结果表明,即使给定子波与真实子波有较高的相似性,依赖于频率的子波相位误差仍可能导致反演结果严重偏离真解。对给定子波进行常相位旋转可以在一定程度上提高反演结果的精度,但却无法完全校正子波相位不准的影响。而且子波相位不准为反演引入的是系统误差而非随机误差,很难采用统计性方法予以消除,从根本上限制了叠前反演的精度。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
骆春妹
王尚旭
袁三一
关键词子波   相位   叠前反演     
Abstract: Wavelets are critical to inversion methods. Incorrect phase estimation will affect the objective function and cause convergence to local minima, and thus produce biased or incorrect results. Based on two simple models and ignoring all other factors, we studied the variation of the wavelet phase as a function of frequency and its effect on the prestack waveform inversion. Numerical experiments show that an incorrect phase may result in large deviations from the real solution, even if there is a high similarity between the model and real wavelets. The precision of the inversion slightly improves by using the constant-phase rotation; however, the effect of phase inaccuracy is not eliminated, which limits the precision of prestack inversion.
Key wordswavelet   phase   prestack inversion   
收稿日期: 2014-05-30;
基金资助:

本研究由973项目(编号:2013CB228600)、国家自然科学基金项目(编号:41304108)、中国石油大学(北京)科研基金(编号:KYJJ2012-05-06)和中国石油大学(北京)科研基金(编号:2462013YJRC007)联合资助。

引用本文:   
骆春妹,王尚旭,袁三一. 子波相位不准对叠前波形反演的影响[J]. 应用地球物理, 2014, 11(4): 479-488.
LUO Chun-Mei,WANG Shang-Xu,YUAN San-Yi. Effect of inaccurate wavelet phase on prestack waveform inversion[J]. APPLIED GEOPHYSICS, 2014, 11(4): 479-488.
 
[1] Aki, K., and Richards, P. G., 2002, Quantitative seismology: Theory and methods. University Science Books.
[2] Alemie, W. and Sacchi, M. D., 2011, High-resolution three-term AVO inversion by means of a Trivariate Cauchy probability distribution: Geophysics, 2011, 76(3), 43-55.
[3] Asnaashari, A., Brossier, R., Garambois, S., Audebert, F., Thore, P., and Virieux, J., 2013, Regularized seismic full waveform inversion with prior model information: Geophysics, 78(2), R25-R36.
[4] Broadhead, M., 2008, The impact of random noise on seismic wavelet estimation: The Leading Edge, 27(2), 226-230.
[5] Buland, A., and Omre, H., 2003, Bayesian wavelet estimation from seismic and well data: Geophysics, 68(6), 2000-2009.
[6] Delprat-Jannaud, F., and Lailly, P., 2005, A fundamental limitation for the reconstruction of impedance profiles from seismic data: Geophysics, 70(1), 1-14.
[7] Edgar J, and van der Baan M., 2011, How reliable is statistical wavelet estimation?: Geophysics, 2011, 76(4), 59-68.
[8] Huang, X., Kelkar, M., Chopra, A., and Yang, C., 1995, Wavelet sensitivity study on inversion using heuristic combinatorial algorithms: 65th Annual International Metting, SEG, Expanded Abstracts, 1088-1090.
[9] Liang, G., Cai, X., and Li, Q., 2002, Using high-order cumulants to extrapolate spatially variant seismic wavelets: Geophysics, 67(6), 1869-1876.
[10] Lindsey, J. P. 1988, Measuring wavelet phase from seismic data: The Leading Edge, 7(7), 10-16.
[11] Nowak, E. J., Swan, H. W., and Lane, D., 2008, Quantitative thickness estimates from the spectral response of AVO measurements: Geophysics, 73(1), C1-C6.
[12] Ostrander, W., 1984, Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence: Geophysics, 49(10), 1637-1648.
[13] Perez, D. O., and Veils, D. R., 2011, Sparse-spike AVO/AVA attributes from prestack data: 81st Annual International Metting, SEG,, Expanded Abstracts, 340-344.
[14] Perez, D. O., Veils, D. R., and Sacchi, M., 2013, High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategy: Geophysics, 78(5), 185-195.
[15] Todoeschuck, J. P., and Jensen, O. G., 1988, Joseph geology and seismic deconvolution: Geophysics, 53(11), 1410-1414.
[16] van der Baan, M., 2008, Time-varying wavelet estimation and deconvolution by kurtosis maximization: Geophysics, 73(2), V11-V18.
[17] van der Baan, M., and Pham, D., 2008, Robust wavelet estimation and blind deconvolution of noisy surface seismics: Geophysics, 73(5), 37-46.
[18] van der Baan, M., and S. Fomel, 2009, Nonstationary phase estimation using regularized local kurtosis maximization: Geophysics, 74(6), A75-A80.
[19] Velis, D. R., 2008, Stochastic sparse-spike deconvolution: Geophysics, 73(1), R1-R9.
[20] Wood, W., 1999, Simultaneous deconvolution and wavelet inversion as a global optimization: Geophysics, 64(4), 1108-1115.
[21] Yu, Y. C., Wang, S. X. Yuan, S. Y., and Qi, P. F., 2011, Phase estimation in bispectral domain based on conformal mapping and applications in seismic wavelet estimation: Applied Geophysics, 8(1), 36-47.
[22] Yuan, S. Y., and Wang, S. X., 2011, Influence of inaccurate wavelet phase estimation on seismic inversion: Applied Geophysics, 8(1), 48-59.
[23] Yuan, S. Y., and Wang, S. X., 2013, Spectral sparse Bayesian learning reflectivity inversion: Geophysical Prospecting, 61(4), 735-746.
[24] Yuan, S. Y., Wang, S. X. and Tian, N. 2009, Swarm intelligence optimization and its application in geophysical data inversion: Applied Geophysics, 6(2), 166-174.
[1] 李皓,李国发,郭祥辉,孙夕平 ,王建富. 基于非稳态反演的气枪阵列子波方向性反褶积?[J]. 应用地球物理, 2019, 16(1): 124-132.
[2] 姬战怀,严胜刚. 改进的Gabor小波变换的特性在地震信号处理和解释中的应用[J]. 应用地球物理, 2017, 14(4): 529-542.
[3] 崔超,黄建平,李振春,廖文远,关哲. 一种基于拟相位信息目标泛函的反射波波形反演方法[J]. 应用地球物理, 2017, 14(3): 407-418.
[4] 王德营,黄建平,孔雪,李振春,王姣. 基于时频二次谱的提高地震资料分辨率方法[J]. 应用地球物理, 2017, 14(2): 236-246.
[5] 张华,贺振华,李亚林,李瑞,何光明,李忠. 频域谱反演提高转换波薄层分辨率方法研究与应用[J]. 应用地球物理, 2017, 14(2): 247-257.
[6] 王德营,凌云. 基于相移和相位滤波的面波压制方法[J]. 应用地球物理, 2016, 13(4): 614-620.
[7] 王康宁, 孙赞东, 董宁. 基于各向异性MRF-MAP的叠前反演及在页岩气甜点识别中的应用[J]. 应用地球物理, 2015, 12(4): 533-544.
[8] Mohammad Mahdi Abedi, Siyavash Torabi. 基于剩余动校正拉伸补偿的改进子波估计方法研究[J]. 应用地球物理, 2015, 12(4): 598-604.
[9] 张如伟, 李洪奇, 张宝金, 黄捍东, 文鹏飞. 基于叠前地震AVA反演的天然气水合物沉积物识别[J]. 应用地球物理, 2015, 12(3): 453-464.
[10] 黄捍东, 王彦超, 郭飞, 张生, 纪永祯, 刘承汉. 基于Zoeppritz方程的叠前地震反演方法研究及其在流体识别中的应用[J]. 应用地球物理, 2015, 12(2): 199-211.
[11] 张军华, 张彬彬, 张在金, 梁鸿贤, 葛大明. 地震低频信息缺失特征分析及拓频方法研究[J]. 应用地球物理, 2015, 12(2): 212-220.
[12] 王宗俊, 曹思远, 张浩然, 曲英铭, 袁殿, 杨金浩, 张德龙, 邵冠铭. 能量比法提取品质因子Q[J]. 应用地球物理, 2015, 12(1): 86-92.
[13] 周怀来, 王峻, 王明春, 沈铭成, 张昕锟, 梁平. 基于广义S变换的地震资料振幅谱补偿和相位谱校正方法研究[J]. 应用地球物理, 2014, 11(4): 468-478.
[14] 赫建伟, 陆文凯, 李钟晓. 一种自适应上下缆地震数据合并技术[J]. 应用地球物理, 2013, 10(4): 469-476.
[15] 田玉昆, 周辉, 陈汉明, 邹雅铭, 关守军. Huber-Markov随机场自适应边缘保护贝叶斯地震资料叠前反演[J]. 应用地球物理, 2013, 10(4): 453-460.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司