APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (4): 468-478    DOI: 10.1007/s11770-014-0456-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于广义S变换的地震资料振幅谱补偿和相位谱校正方法研究
周怀来1,2,3,王峻4,王明春5,沈铭成3,张昕锟3,梁平6
1. 成都理工大学地球探测与信息技术教育部重点实验室,成都 610059
2. 成都理工大学油气藏地质及开发工程国家重点实验室,成都 610059
3. 成都理工大学地球物理学院,成都 610059
4. 成都理工大学沉积研究院,成都 610059
5. 中海石油(中国)有限公司天津分公司渤海油田勘探开发研究院,天津 300452
6. 成都理工大学能源学院,成都 610059
Amplitude spectrum compensation and phase spectrum correction of seismic data based on the generalized S transform
Zhou Huai-Lai1,2,3, Wang Jun4, Wang Ming-Chun5, Shen Ming-Cheng3, Zhang Xin-Kun3, and Liang Ping6
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, CDUT, Chengdu 610059, China.
2. Key Lab of Earth Exploration & Information Techniques of Ministry of Education, CDUT, Chengdu 610059, China.
3. College of Geophysics, Chengdu University of Technology, Chengdu 610059, China.
4. Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China.
5. Exploration and Development Institute of Bohai Oil Field of CNOOC Co., Ltd Tianjin Branch, Tianjing 300452, China.
6. College of Energy Resource, Chengdu University of Technology, Chengdu 610059, China.
 全文: PDF (1187 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 由于地下介质对地震波振幅的影响和地震波频散因素,地震波振幅和相位随时间、空间及频率的变化而发生改变,本文提出一种基于广义S变换的振幅谱补偿和相位谱校正新方法。该方法在S域中分为振幅谱补偿和相位谱校正两个步骤进行处理:振幅谱补偿是在地震记录可靠频带范围内恢复反射系数的振幅谱,其具体实现是在S域中利用谱模拟技术来拟合时变子波振幅谱,从而补偿由地层吸收所引起的振幅衰减;相位谱校正是消除子波剩余相位的影响,其具体实现是在S域中利用相位扫描来拾取随时间、空间和频率而变化的相位校正量,并由Parsimony准则来进行最佳相位判别。本文方法不需要直接求取Q值,能够适用于变Q值情况。理论模型和实际资料处理表明,该方法不仅能恢复地层反射系数的振幅谱,还可以有效消除子波剩余相位的影响,使子波接近或达到零相位,从而提高地震资料分辨率。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
周怀来
王峻
王明春
沈铭成
张昕锟
梁平
关键词广义S变换   振幅谱   相位谱   地震分辨率   相位校正     
Abstract: We propose a method for the compensation and phase correction of the amplitude spectrum based on the generalized S transform. The compensation of the amplitude spectrum within a reliable frequency range of the seismic record is performed in the S domain to restore the amplitude spectrum of reflection. We use spectral simulation methods to fit the time-dependent amplitude spectrum and compensate for the amplitude attenuation owing to absorption. We use phase scanning to select the time-, space-, and frequency-dependent phases correction based on the parsimony criterion and eliminate the residual phase effect of the wavelet in the S domain. The method does not directly calculate the Q value; thus, it can be applied to the case of variable Q. The comparison of the theory model and field data verify that the proposed method can recover the amplitude spectrum of the strata reflectivity, while eliminating the effect of the residual phase of the wavelet. Thus, the wavelet approaches the zero-phase wavelet and, the seismic resolution is improved.
Key wordsgeneralized S transform   amplitude spectra   phase spectra   seismic resolution   phase correction   
收稿日期: 2012-08-20;
基金资助:

本研究由国家自然科学基金(编号:41204091)、教育部博士点新教师基金(编号:20105122120001)和四川省科技厅科技支撑计划项目(编号:2011GZ0244)联合资助。

引用本文:   
周怀来,王峻,王明春等. 基于广义S变换的地震资料振幅谱补偿和相位谱校正方法研究[J]. 应用地球物理, 2014, 11(4): 468-478.
ZHOU Huai-Lai,WANG Jun,WANG Ming-Chun et al. Amplitude spectrum compensation and phase spectrum correction of seismic data based on the generalized S transform[J]. APPLIED GEOPHYSICS, 2014, 11(4): 468-478.
 
[1] Bracewell, R. N., 2000, The Fourier integral and Its Applications, 3rd ed., [M]. Boston: McGraw-Hill, U. S. A, 256-260.
[2] Carlos, A. M., and Margrave, G. F., 2005, Phase correction in Gabor deconvolution: 75th Annual International Meeting, SEG, Expanded Abstracts, 2173-2176.
[3] Chen, B. Y., Chen, M. W., and Yi, W. Q., 1997, Time and space and subsection frequency phase correction: Oil Geophysical Prospecting (in Chinese), 32(1), 103-108.
[4] Claerbout, J. F., 1977, Parsimonious deconvolution: Stanford Exploration Project, 13, 1-9.
[5] Cohen, L., 1995, Time-Frequency Analysis: Theory and Applications [M]. N j: Prentice Hall, Inc., U. S. A, 25-27.
[6] Durak, L., and Arikan, O., 2003, Short-time Fourier transform: two fundamental properties and optimal implementation: IEEE Trans. on signal Processing, 51(5), 1231-1242.
[7] Ferber, R., 2005, A filter bank solution to absorption simulation and compensation: 75th Annual International Meeting, SEG, Expanded Abstracts, 2170-2172.
[8] Gabor, D., 1946, Theory of Communication: Journal of IEEE, 93(3), 429-457.
[9] Gao, J. H., Chen, W. C., Li, Y. M., and Tian, F., 2003, Generalized S transform and seismic response analysis of thin interbeds: Chinese Journal of Geophysics (in Chinese), 46(4), 526-532.
[10] Gao, S. W., Zhou, X. Y., and Cai, J. M., 2001, Surface-consistent phase correction for reflection wave: Oil Geophysical Prospecting (in Chinese), 36(4), 480-487.
[11] Levy, S., and Oldenburg, D. W., 1982, The deconvolution of phase-shifted wavelets: Geophysics, 47(9), 1285-1294.
[12] Levy, S., and Oldenburg, D. W., 1987, Automatic phase correction of common-midpoint stacked data: Geophysics, 52(1), 51-59.
[13] Li, K. P., Li, Y. D., and Zhang, X. G., 2000, A method to compensation earth filtering based on wavelet packet: Chinese Journal Of Geophysics, 43(4), 542-549.
[14] Li, Q. Z., 1994, The road to Precision Prospecting—High Resolution Seismic Prospecting System Analysis (in Chinese).: Petroleum Industry Press, Beijing, 89-92.
[15] Li, T. C., He, Y. M., Sun, J., Xu, Z. Q., Liu, J. M., Qin, D. M., and Zhu, J. M., 2010, Research and application of frequency amplitude compensation by frequency decomposition based on generalized S transformation: Computing Techniques for Geophysical and Geochemical exploration(in Chinese), 36(6), 583-586.
[16] Liu, X. W., Nian, J. B., and Liu, H., 2006, Generalized S-transform based seismic attenuation analysis: Progress in Exploration Geophysics (in Chinese), 29(1), 14-19.
[17] Ma, J. Q., Li, Q. C., and Wang, M. D., 2010, Stratigraphic absorption-compensation based on the generalized S-transform: Coal Geology and Exploration (in Chinese), 38(4), 65-68.
[18] Mansinha, L., Stockwell, R. G., and Lowe, R. P., 1997, Pattern analysis with two dimensional spectral localization: Application of two dimensional S-transform: Physics Section A, 239(3), 286-295.
[19] Margrave, G. F., 1998, Theory of nonstationary linear filtering in the Fourier domain with application to time-variant filtering: Geophysics, 63, 244-259.
[20] Margrave, G. F., and Lamoureux, M. P., 2001, Gabor deconvolution:CREWES Research Report. 13, 241-276.
[21] McFadden, P. D., Cook, J. G., and Forster, L. M., 1999, Decomposition of gear vibration signals by generalized S-transform: Mechnical Systems and Signal Process, 13(4), 691-707.
[22] Mirko van der Baan and Fomel, S., 2009, Nonstationary phase estimation using regularized local kurtosis maximization: Geophysics, 74(6), A75-A80.
[23] Mirko van der Baan, 2012, Bandwidth enhancement: Inverse Q filtering or time-varying wiener deconvolution: Geophysics, 77(4), V133-V142.
[24] Peng, C., Zhu, S. J., Sun, J. K., Lin, S. W., Chang, X., and Zhao, J. M., 2007, Dynamic seismic wavelet estimation: Petroleum Geology and Oilfield Development in Daqing (in Chinese), 26(5), 125-128.
[25] Pinnegar, C. R., and Mansinha, L., 2003, The S-transform with windows of arbitrary and varying shape: Geophysics, 68(1), 381-385.
[26] Pinnegar, C. R., and Mansinha, L., 2003, Time local spectral analysis for non-stationary time series: the S-transform for noisy signals: Fluctuation and Noise Letters, 3(3), 357-364.
[27] Ricker, N. H., 1977, Transient waves in visco-elastic media: Elsevier Science Publ Co, 123-136.
[28] Rioul, O., and Vetterli, M., 1991, Wavelets and signal processing: IEEE Signal Processing, 8(4), 14-38.
[29] Rosa, A. L. R., and Ulrych, T. J., 1991, Processing via spectral modeling: Geophysics, 56(8), 1244-1251.
[30] Song, Z. P, Li, J. J., and Zhang, L. P., 2004, Pre-stack constant phase correction: Petroleum Geology and Oilfield Development in Daqing (in Chinese), 23(2), 69-70.
[31] Stockwell, R. G., Mansinha, L., and Lowe, R. P., 1996, Localization of the complex spectrum: the S transform: IEEE Transactions on signal processing, 44(4), 998-1001.
[32] Sun, C. Y., 2000, Spectrum modeling method and its application to seismic resolution improvement: Oil Geophysical Prospecting (in Chinese), 35(12), 27-34.
[33] Wang, Y. H., 2002, A stable and efficient approach of inverse Q filtering: Geophysics, 67(2), 657-663.
[34] Wang, Y. H., 2006, Inverse Q filtering for seismic resolution enhancement: Geophysics, 71(3), 51-61.
[35] Wang, Y. H., 2007, Seismic time-frequency spectral decomposition by matching pursuit: Geophysics, 72, V13-V20, doi:10.1190/1.2387109.
[36] Wang, Y. H., 2010, Multichannel matching pursuit for seismic trace decomposition: Geophysics, 75, V61-V66.
[37] Yu, S. P., 1993, The High Resolution Seismic Processing (in Chinese) [M]. Beijing: Petroleum In dustry Press, China, 162-164.
[38] Yuan, X. G., Song, S. G., Zhang, J. G., Hou, M. Z., and Yang, J. H., 2001, Treatment of stacked seismic data with multi-resolution frequency-amplitude compensation: Journal of Central South University of Technology (in Chinese), 32(3), 224-226.
[39] Zhao, B., Yu, S. P., Nie, X. B., and Huang, X. N., 1996, Spectral-modeled deconvolution and its application: Oil Geophysical Prospecting (in Chinese), 31(1), 101-115.
[40] Zhou, X. Y., 1989, Constant phase correction: Oil Geophysical Prospecting (in Chinese), 24(2), 119-129.
[1] 吴宗蔚,伍翊嘉,徐明华,郭思. 连续谱比斜率法叠前CMP道集Q值估计[J]. 应用地球物理, 2018, 15(3-4): 481-490.
[2] 隋京坤, 郑晓东, 李艳东. 一种基于振幅谱的地震相干属性计算方法[J]. 应用地球物理, 2015, 12(3): 353-361.
[3] 赫建伟, 陆文凯, 李钟晓. 一种自适应上下缆地震数据合并技术[J]. 应用地球物理, 2013, 10(4): 469-476.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司