APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (4): 418-428    DOI: 10.1007/s11770-014-0465-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
海底天然气水合物OBS多分量地震正演模拟
杨佳佳,何兵寿,张建中
中国海洋大学海底科学与探测技术教育部重点实验室,青岛 266100
Multicomponent seismic forward modeling of gas hydrates beneath the seafloor
Yang Jia-Jia1, He Bing-Shou1, and Zhang Jian-Zhong1
1. Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education, Ocean University of China, Qingdao 266100, China.
 全文: PDF (986 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在分析了海洋天然气水合物岩石物理性质的基础上,根据Ecker 的水合物沉积物的三种微观模式,计算含水合物沉积层和含游离气沉积物的弹性模量,分析对比了水合物的不同微观模式、不同水合物饱和度以及不同游离气饱和度对沉积物弹性模量的影响;从纵横波分离的弹性波动方程出发,采用交错网格空间有限差分方法模拟地震波在海底天然气水合物沉积地层的传播,得到纵、横波的海底地震(OBS)共接收点道集。数值算例表明,当水合物作为流体的一部分但并未固结固体架时,仅纵波记录上存在BSR;当水合物胶结固体骨架时,纵、横波记录上均存在BSR。同时,由于OBS 会接收到上行纵波和上行横波在海底界面形成的转换波,对横波记录产生影响并干扰BSR 的识别。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨佳佳
何兵寿
张建中
关键词天然气水合物   BSR   有限差分   正演模拟   交错网格     
Abstract: We investigated the effect of microscopic distribution modes of hydrates in porous sediments, and the saturation of hydrates and free gas on the elastic properties of saturated sediments. We simulated the propagation of seismic waves in gas hydrate-bearing sediments beneath the seafloor, and obtained the common receiver gathers of compressional waves (P-waves) and shear waves (S-waves). The numerical results suggest that the interface between sediments containing gas hydrates and free gas produces a large-amplitude bottom-simulating reflector. The analysis of multicomponent common receiver data suggests that ocean-bottom seismometers receive the converted waves of upgoing P- and S-waves, which increases the complexity of the wavefield record.
Key wordsgas hydrates   BSR   finite difference   forward modeling   staggered grid   
收稿日期: 2013-10-15;
基金资助:

本研究由国家自然科学基金项目(编号:41174087和41204089)和国家油气重大专项项目(编号:2011ZX05005-005)联合资助。

引用本文:   
杨佳佳,何兵寿,张建中. 海底天然气水合物OBS多分量地震正演模拟[J]. 应用地球物理, 2014, 11(4): 418-428.
YANG Jia-Jia,HE Bing-Shou,ZHANG Jian-Zhong. Multicomponent seismic forward modeling of gas hydrates beneath the seafloor[J]. APPLIED GEOPHYSICS, 2014, 11(4): 418-428.
 
[1] Andreassen, K., Hart, P., and Mackay, M., 1997, Amplitude versus offset modeling of the bottom simulating reflection associated with submarine gas hydrates: Marine Geology, 137(1-2), 25-0.
[2] Aki, K., 2002, Quantitative seismology, 2nded: Sausalito, Calif., University Science Books.
[3] Berenger, J. P., 1994, A perfectly matched layer for the absorption of electro-magnetic waves: Journal of Computational Physics, 114, 185-200.
[4] Dillon, W. P., Lee, M. W., Fehlhaber, K., and Coleman, D. F., 1993, Gas hydrates on the Atlantic Continental Margin of the United States - controls on concentration: The Future of Energy Gases, United States Geological Survey, Professional Paper, 1570, 313-330.
[5] Dong, L. G., Ma, Z. T., Cao, J. Z., et al., 2000, A Staggered-grid High-order Difference Method of One-order Elastic Wave Equation: Chinese Journal of Geophysics(in Chinese), 43(3), 411-19.
[6] Ecker, C., Dvorkin, J., and Nur, A., 1998, Sediments with gas hydrates: Internal structure from seismic AVO: Geophysics, 63(5), 1659-1669.
[7] Ecker, C., 2001, Seismic characterization of methane hydrate structures: PhD Thesis, Stanford University, California.
[8] He, B. S., and Zhang, H. X., 2006, Vector prestack depth migration of multi-component wavefield: Oil Geophysical Prospecting(in Chinese), 41(4), 369-374.
[9] Korenaga, J., Holbrook, W. S., Singh, S. C., and Minshull, T. A., 1997, Natural gas hydrates on the southeast U.S. margin: Constraints from full waveform and travel time inversions of wide-angle seismic data: Journal of Geophysical Research, 102(B7), 15345-15365.
[10] Kvenvolden, K. A., 1993, Gas hydrates-geological perspective and global change: Reviews of Geophysics, 31, 173-187.
[11] Mienert, J., Bunz, S., Guidard, S., Vanneste, M., and Berndt, C., 2005, Ocean bottom seismometer investigations in the Ormen Lange area offshore mid-Norway provide evidence for shallow gas layers in subsurface sediments: Marine and Petroleum Geology, 22, 287-297.
[12] Mu, Y. G., and Pei, Z. L., 2005, Seismic Numerical Modeling for 3-D Complex Media: Petroleum Industry Press, China (in Chinese), 14-32.
[13] Petersen, C. J., Papenberg, C., and Klaeschen, D., 2007, Local seismic quantification of gas hydrates and BSR characterization from multi-frequency OBS data at northern Hydrate Ridge: Earth and Planetary Science Letters, 255(3-), 414-31.
[14] Ruan, A. G., Li, J. B., Chu, F. Y., and Li, X. Y., 2006, AVO munerical simulation of gas hydrates reflectors beneath seafloor: Chinese Journal of Geophysics(in Chinese), 49(6), 1826-1835.
[15] Ruan, A. G., Chu, F. Y., and Meng, B. Z., 2007, Seismic Methods and OBS Application in the Study of Oceanic Gas Hydrates: Natural Gas Industry(in Chinese), 27(4), 46-8.
[16] Sholl, D. W., and Hart, P. E., 1993, Velocity and amplitude structure on seismic-reflection profiles-possibly massive gas-hydrate deposits and underlying gas accumulations in the Bering Sea Basin: The Future of Energy Gases, United States Geological Survey Professional Paper, 1570, 331-351.
[17] Sloan, E. D., 1990, Clathrate Hydrate of Natural Gases: Marcel Dekker Press, New York.
[18] Sun, C. Y., Zhang, M. Y., Niu, B. H. and Huang, X. W., 2003, Study of modeling seismic bottom simulating reflector for nature gas hydrate: Geoscience(in Chinese), 17(3), 337-344.
[19] Sun, C. Y., Zhang, M. Y., Niu, B. H., and Huang, X. W., 2003, Modeling of seismic blanking zone for gas hydrate: Earth Science Frontiers (China University of Geosciences, Beijing) (in Chinese), 10(1), 199-204.
[20] Sun, Q. F., and Du, Q. Z., 2011, A review of the multi-component seismic data processing: Petroleum Exploration and Development(in Chinese), 38(1), 67-73.
[21] Wang, X. J., Wu, S. G., and Liu, X. W., 2006, Factors affecting the estimation of gas hydrate and free gas saturation: Chinese Journal of Geophysics(in Chinese), 49(2), 504-511.
[22] Wood, W. T., Stoffa, P. L., and Shipley, T. H., 1994, Quantitative detection of methane hydrate through high-resolution seismic velocity analysis: Journal of Geophysical Research, 99(B5), 9681-9695.
[23] Wyllie, M. R. J., Gregory, A. R., and Gardner, G. H. F., 1958, An experimental investigation of factors affecting elastic wave velocities in porous media: Geophysics, 23(3), 459-93.
[24] Xia, C. L., Liu, X. W., Xia, M. L., and Liu, E. H., 2008, Application of ocean bottom seismic in exploration of gas hydrate: Progress in Exploration Geophysics (in Chinese), 31(4), 259-264.
[1] 张振波, 轩义华, 邓勇. 斜缆地震道集资料的叠前同时反演*[J]. 应用地球物理, 2019, 16(1): 99-108.
[2] 成景旺,范娜,张友源,吕晓春. 基于贴体旋转交错网格的起伏地表地震波有限差分数值模拟[J]. 应用地球物理, 2018, 15(3-4): 420-431.
[3] 曹雪砷,陈浩,李平,贺洪斌,周吟秋,王秀明. 基于分段线性调频的宽带偶极子声源的测井方法研究[J]. 应用地球物理, 2018, 15(2): 197-207.
[4] 任英俊,黄建平,雍鹏,刘梦丽,崔超,杨明伟. 窗函数交错网格有限差分算子及其优化方法[J]. 应用地球物理, 2018, 15(2): 253-260.
[5] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[6] 黄鑫,殷长春,曹晓月,刘云鹤,张博,蔡晶. 基于谱元法三维航空电磁电各向异性模拟及识别研究[J]. 应用地球物理, 2017, 14(3): 419-430.
[7] 方刚,巴晶,刘欣欣,祝堃,刘国昌. 基于时间辛格式的傅里叶有限差分地震波场正演[J]. 应用地球物理, 2017, 14(2): 258-269.
[8] 张煜,平萍,张双喜. 孔隙介质中面波有限差分模拟及应力镜像条件[J]. 应用地球物理, 2017, 14(1): 105-114.
[9] 王建,孟小红,刘洪,郑婉秋,贵生. 余弦修正二项式窗的交错网格有限差分地震正演方法[J]. 应用地球物理, 2017, 14(1): 115-124.
[10] 张建敏,何兵寿,唐怀谷. 三维TTI介质中的纯准P波方程及求解方法[J]. 应用地球物理, 2017, 14(1): 125-132.
[11] 陈辉,邓居智,尹敏,殷长春,汤文武. 直流电阻率法三维正演的聚集代数多重网格算法研究[J]. 应用地球物理, 2017, 14(1): 154-164.
[12] 孟庆鑫,胡祥云,潘和平,周峰. 地-井瞬变电磁多分量响应数值分析[J]. 应用地球物理, 2017, 14(1): 175-186.
[13] 陶蓓,陈德华,何晓,王秀明. 界面不规则性对套后超声波成像测井响应影响的模拟研究[J]. 应用地球物理, 2016, 13(4): 683-688.
[14] 常江浩,于景邨,刘志新. 煤矿老空水全空间瞬变电磁响应三维数值模拟及应用[J]. 应用地球物理, 2016, 13(3): 539-552.
[15] 王涛,谭捍东,李志强,王堃鹏,胡志明,张兴东. ZTEM三维有限差分数值模拟算法及响应特征研究[J]. 应用地球物理, 2016, 13(3): 553-560.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司