APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (3): 257-268    DOI: 10.1007/s11770-014-0438-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
孔洞型储层测井饱和度解释方程的确定及应用
孙文杰1,2,李宁1,2,3,武宏亮1,王克文1,张宫1,2
1. 中国石油勘探开发研究院,北京 100083
2. 北京大学地球与空间科学学院,北京 100871
3. 长江大学,武汉 434023
Establishment and application of logging saturation interpretation equation in vuggy reservoirs
Sun Wen-Jie1,2, Li Ning1,2,3, Wu Hong-Liang1, Wang Ke-Wen1, and Zhang Gong1,2
1. Research Institute of Petroleum Exploration & Development, CNPC, Beijing 100083, China.
2. School of Earth and Space Sciences, Peking University, Beijing 100871, China.
3. Yangtze University, Wuhan  434023, China.
 全文: PDF (953 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 孔洞型储层是国内非均质碳酸盐岩油气藏中最常见的一类重要储层。但关于用测井方法计算这类储层油气饱和度的研究却十分薄弱,多数情况仍沿用传统方法。本文首先从理论上分析了孔洞型储层岩电关系,得出了其岩电关系曲线存在特殊的“平台”现象,通过一系列具有特定孔洞特征的岩心的单因素数值模拟和岩电实验,详细研究了不同孔洞大小、数量及分布对岩电关系的影响。在此基础上,基于饱和度通解方程理论确定了孔洞型储层测井饱和度解释方程的具体形式,从水电相似原理出发推导得出方程参数是与孔洞和基质孔隙的大小分布等孔隙结构有关的物理量。基于此,提出了一种利用核磁测井资料构造核磁毛管压力曲线、求取孔隙结构参数、进而确定方程待定参数的方法。现场应用证明,新方程的饱和度计算结果与取心分析结果符合良好,平均绝对误差为5.8%。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙文杰
李宁
武宏亮
王克文
张宫
关键词孔洞型储层   饱和度测井解释   通解方程   毛管压力   核磁毛管压力曲线   岩电实验     
Abstract: Vuggy reservoirs are the most common, albeit important heterogeneous carbonate reservoirs in China. However, saturation calculations using logging data are not well developed, whereas Archie method is more common. In this study, electrical conduction in a vuggy reservoir is theoretically analyzed to establish a new saturation equation for vuggy reservoirs. We found that vugs have a greater effect on saturation than resistivity, which causes inflection in the rock-electricity curve. Using single-variable experiments, we evaluated the effects of vug size, vug number, and vug distribution on the rock-electricity relation. Based on the general saturation model, a saturation equation for vuggy reservoirs is derived, and the physical significance of the equation parameters is discussed based on the seepage–electricity similarity. The equation parameters depend on the pore structure, and vugs and matrix pore size distribution. Furthermore, a method for calculating the equation parameters is proposed, which uses nuclear magnetic resonance (NMR) data to calculate the capillary pressure curve. Field application of the proposed equation and parameter derivation method shows good match between calculated and experimental results, with an average absolute error of 5.8%.
Key wordsVuggy reservoir   saturation   general solution saturation equation   capillary pressure   capillary pressure curve   NMR   rock electricity   
收稿日期: 2013-10-23;
基金资助:

本研究项目由国家重大专项(编号:2011ZX05020-008)资助。

引用本文:   
孙文杰,李宁,武宏亮等. 孔洞型储层测井饱和度解释方程的确定及应用[J]. 应用地球物理, 2014, 11(3): 257-268.
SUN Wen-Jie,LI Ning,WU Hong-Liang et al. Establishment and application of logging saturation interpretation equation in vuggy reservoirs[J]. APPLIED GEOPHYSICS, 2014, 11(3): 257-268.
 
[1] Aguilera, M. S., and Aguilera, R., 2003, Improved models for petrophysical analysis of dual porosity reservoirs: Petrophysics, 44(1), 21-35.
[2] Aguilera, R., 1976, Analysis of naturally fractured reservoirs from conventional well logs: Journal of Petroleum Technology, 28(7), 764-772.
[3] Aguilera, R. F., and Aguilera, R., 2004, A triple porosity model for petrophysical analysis of naturally reservoirs: Petrophysics, 45(2), 157-166.
[4] Alger, R. P., and Raymer, L. L., 1963, Formation density log application in liquid-filled holes: JPT, 15(4), 321-332.
[5] Archie, G. E., 1942, The electrical resistivity log as an aid in determining some reservoir characteristics: Trans. AIME, 146, 54-62.
[6] Berg, C. R., 1995, A simple, effective-medium model for water saturation in porous rocks: Geophysics, 60(4), 1070-1080.
[7] Berg, C. R., 1996, Effective-medium resistivity models for calculation water saturation in porous rock: The Log Analyst, 37(3), 16-28.
[8] Brooks, R. H., and Corey, A. T., 1966, Properties of porous media affecting fluid flow: J. Irrig. Drain. Div., 6, 61.
[9] Clavier, C., Coates, G., and Dumanoir, J., 1984, Theoretical and experimental bases for the dual-water model for interpretation of shaly sands: SPE Journal, 24(2), 153-168.
[10] Dewitte, L., 1950, Relation between resistivities and fluid content of porous rock: J. Oil and Gas, 49(8), 120-132.
[11] Dewitte, L., 1955, A study of electric log interpretation methods in shaly formation: AIME, 204, 103-132.
[12] Fraser, D., 1958, A quantitative study of electric logs in oil-wet and fractured reservoirs: Ph.D. dissertation, The University of Texas.
[13] Kazatchenko, E., Markov, M., and Mousatov, A., 2004, Joint inversion of acoustic and resistivity data for carbonate microstructure evaluation: Petrophysics, 45(2), 130-140.
[14] Kazatchenko, E., Markov, M., and Mousatov, A., 2004, Joint modeling of acoustic velocities and electrical conductivity from unified microstructure of rocks: Journal of Geophysical Research: Solid Earth, 109(B1), 8.
[15] Kazatchenko, E., Markov, M., and Mousatov, A. et al., 2006, Simulation of the electrical resistivity of dual-porosity carbonate formations saturated with fluid mixtures: Petrophysics, 47(1), 23-36.
[16] Li, N., 1989, General forms of the resistivity-porosity and resistivity-oil/gas saturation relations, as well as the determination of their optimum approximating function types (I): Chinese geophysics Journal (in Chinese), 32(5), 580-591.
[17] Li, N., 1993, General forms of the resistivity-porosity and resistivity-oil/gas saturation relations, as well as the determination of their optimum approximating function types (II), Society of Exploration Geophysicists (in Chinese), Chinese Petroleum Society, Beijing, 239-242.
[18] Mao, Z. Q., and Gao, C. Q., 2000, Theoretical simulation of the resistivity and pore structure of hydrocarbon bearing rocks: Petroleum Exploration and Development (in Chinese), 27(2), 87-90.
[19] Pan, X. F., Zeng, W., and Zhang, Z. et al., 2006, The microscopic characteristic and meanings of fractured reservoir in Qing-Xi area: Journal of Southwest Petroleum Institute (in Chinese), 28(5), 36-39.
[20] Poupon, A., Loy, M. E., and Tixer, M. P., 1954, A contribution to electric log interpretation in shaly sands: AIME, 201, 138-145.
[21] Purcell, W. R., 1949, Capillary pressures-their measurement using mercury and the calculation of permeability: Journal of Petroleum Technology, 1(2), 39-48.
[22] Silva, P. L., and Bassiouni, Z., 1986, Statistical evaluation of the S-B conductivity model for water-bearing shaly formation: The Log Analyst, 27(3), 9-19.
[23] Simandoux, P., 1963, Dielectric measurements of porous media: application to measurement of water saturations, study of the behavior of argillaceous formations: Revue de L’ Institut Francais du Petrole, 18(S1), 193-215.
[24] Song, Y. J., Shi, Y., and Zhang, Q. G., 2004, On generalized resistivity model for laminated and dispersed shaly sands: Well Logging Technology (in Chinese), 28(2), 118-123.
[25] Waxman, M. H., 1974, Electrical conductivities in shaly sands: (I) The relation between hydrocarbon saturation and resistivity index; (II) The temperature coefficient of electrical conductivity: Journal of Petroleum Technology, 26(3), 213-225.
[26] Waxman, M. H., and Smits, L. J. M., 1968, Electrical conductivities in oil-bearing shaly sands: SPE 1863-A, SPE 42nd Annual Fall Meeting, Houston, Tex., Oct. 1-4, 1967.
[27] Zhao, L. X., and Bu, Y., 1994, Well logging evaluation technology of carbonate reservoir: China Petroleum Industry Press, 90-97.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司