APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (2): 197-206    DOI: 10.1007/s11770-014-0429-1
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
BSR热流的三维地貌校正和流体汇聚探测
何涛1,李洪林1,邹长春2
1. 北京大学地球与空间科学学院造山带与地壳演化教育部重点实验室,北京 100871
2. 地下信息探测技术与仪器教育部重点实验室(中国地质大学,北京),北京 100083
3D topographic correction of the BSR heat flow and detection of focused fluid flow
He Tao1, Li Hong-Lin1, and Zou Chang-Chun2
1. Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education (School of Earth and Space Sciences, Peking University), Beijing 100871, China.
2. Key Laboratory of Geo-detection (China University of Geosciences, Beijing), Ministry of Education, Beijing 100083, China.
 全文: PDF (1288 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 从天然气水合物稳定区底界的地震似海底反射BSR(Bottom Simulating Reflector)深度计算得到的BSR热流包含了海底地貌(热流在凹地型会聚,在凸地形发散)和增生楔内部流体活动的影响。从BSR热流中移除地貌效应的贡献就能揭示出流体是否发生了汇聚。在难以使用解析方法计算地貌效应的复杂海底区域,三维有限元方法可以高精度的模拟地貌对背景热流的影响,从而可以对BSR热流进行地貌效应校正,得到平坦地形条件下的BSR热流,并进一步通过与背景热流值的对比,识别目前仪器所不能探测的流体汇聚区。在北卡斯卡底(Cascadia)俯冲边缘陆坡中部的研究区应用该方法,显示黄瓜岭(Cucumber Ridge)高地及其周围的海底热流正异常显著(高出背景热流值10-20%),同时这些区域在地震成像上与海底的裂隙系统相对应,指示了流体沿着这些高渗透率通道进行汇聚,并且很可能导致较高的水合物富集度。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
何涛
李洪林
邹长春
关键词天然气水合物   BSR   三维有限元   热流   流体     
Abstract: The bottom-simulating reflector (BSR) is a seismic indicator of the bottom of a gas hydrate stability zone. Its depth can be used to calculate the seafloor surface heat flow. The calculated BSR heat flow variations include disturbances from two important factors: (1) seafloor topography, which focuses the heat flow over regions of concave topography and defocuses it over regions of convex topography, and (2) the focused warm fluid flow within the accretionary prism coming from depths deeper than BSR. The focused fluid flow can be detected if the contribution of the topography to the BSR heat flow is removed. However, the analytical equation cannot solve the topographic effect at complex seafloor regions. We prove that 3D finite element method can model the topographic effect on the regional background heat flow with high accuracy, which can then be used to correct the topographic effect and obtain the BSR heat flow under the condition of perfectly flat topography. By comparing the corrected BSR heat flow with the regional background heat flow, focused fluid flow regions can be detected that are originally too small and cannot be detected using present-day equipment. This method was successfully applied to the mid-slope region of northern Cascadia subducting margin. The results suggest that the Cucumber Ridge and its neighboring area are positive heat flow anomalies, about 10%–20% higher than the background heat flow after 3D topographic correction. Moreover, the seismic imaging associated the positive heat flow anomaly areas with seabed fracture–cavity systems. This suggests flow of warm gas-carrying fluids along these high-permeability pathways, which could result in higher gas hydrate concentrations.
Key wordsgas hydrate   BSR   3D finite element   heat flow   fluid flow   
收稿日期: 2014-04-09;
基金资助:

本研究由国家自然科学基金项目(编号:40904029和41274185)和教育部留学回国人员科研启动基金资助项目联合资助。

引用本文:   
何涛,李洪林,邹长春. BSR热流的三维地貌校正和流体汇聚探测[J]. 应用地球物理, 2014, 11(2): 197-206.
HE Tao,LI Hong-Lin,ZOU Chang-Chun. 3D topographic correction of the BSR heat flow and detection of focused fluid flow[J]. APPLIED GEOPHYSICS, 2014, 11(2): 197-206.
 
[1] Bullard, E. C., 1938, The disturbance of the temperature gradient in the earth’s crust by inequalities of height: Monthly Notices Roy. Asiron. Soc., Geophys., Suppl., 4, 360 - 362.
[2] Davis, E. E., and Hyndman, R. D., 1989, Accretion and recent deformation of sediments along the northern Cascadia subduction zone: Geological Society of America Bulletin, 101(11), 1465 - 1480.
[3] Dickens, G. R., and Quinby-Hunt, M. S., 1994, Methane hydrate stability in seawater: Geophysical research Letters, 21(19), 2115 - 2118.
[4] Ganguly, N., Spence, G. D., Chapman, N. R., and Hyndman, R. D., 2000, Heat flow variations from bottom simulating reflectors on the Cascadia margin: Marine geology, 164(1 - 2), 53 - 68.
[5] Grevemeyer, I., and Villinger, H., 2001, Gas hydrate stability and the assessment of heat flow through continental margins: Geophysical Journal International, 145(3), 647 - 660.
[6] Englezos, P., and Bishnoi, P. R., 1988, Prediction of gas hydrate formation conditions in aqueous electrolyte solutions: Am. Inst. Chem. Eng., 34(10), 1718 - 1721.
[7] He, T., Spence, G. D., Riedel, M., Hyndman, R. D., and Chapman, N. R., 2007, Fluid flow and origin of a carbonate mound offshore Vancouver Island: Seismic and heat flow constraints: Marine Geology, 239(1 - 2), 83 - 98.
[8] Hornbach, M. J., Bangs, N. L., and Berndt, C., 2012, Detecting hydrate and fluid flow from bottom simulating reflector depth anomalies: Geology, 40(3), 227 - 230.
[9] Hyndman, R. D., Wang, K., Yuan, T., and Spence, G. D., 1993, Tectonic sediment thickening, fluid expulsion and the thermal regime of subduction zone accretionary prism: The Cascadia margin off Vancouver Island: J. Geophys. Res., 98(B12), 21865 - 21876.
[10] Hyndman, R. D., and Davis, E. E., 1992, A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion: Journal of Geophysical Research, 97(B5), 7025 - 7041.
[11] Hyndman, R. D., and Spence, G. D., 1992, A seismic study of methane hydrate marine bottom-simulating reflectors: Journal of Geophysical Research, 97(B5), 6683 - 6698.
[12] Lachenbruch, A., 1968, Rapid estimation of the topographic disturbance to superficial thermal gradients: Rev. Geophys., 6(3), 365 - 400.
[13] Lees, C. H., 1910, On the shapes of the isotherms under mountain ranges in radio-active districts: Proc. R. Soc. London A, 83, 339 - 345.
[14] Manga, M., Hornbach, M. J., Le Friant, A., et al., 2012, Heat flow in the Lesser Antilles island arc and adjacent back arc Grenada basin: Geochemistry, Geophysics, Geosystems, 13(8), Q8007.
[15] Riedel, M., Tréhu, A., and Spence, G., 2010, Characterizing the thermal regime of cold vents at the northern Cascadia margin from bottom-simulating reflector distributions, heat-probe measurements and borehole temperature data: Marine Geophysical Researches, 31(1 - 2), 1 - 16.
[16] Saint-Venant, A. B. D., 1855, Mémoire sur la flexion des prismes: J Math Pures Appl, 1(2), 89 - 189.
[17] Spieß, V., Zühlsdorff, L., and Cruise Participants, Report and preliminary results of R/V Sonne Cruise SO 149, Universität Bremen, Berichte, Fachbereich Geowissenschaften, 2001.
[18] Yamano, M., Uyeda, S., Aoki, Y., and Shipley, T. H., 1982, Estimates of heat flow derived from gas hydrates: Geology, 10(7), 339 - 343.
[19] Yuan, T., Hyndman, R. D., Spence, G. D., and Desmons, B., 1996, Seismic velocity increase and deep-sea gas hydrate concentration above a bottom-simulating reflector on the northern Cascadia continental slope: J. Geophys. Res., 101(B6), 13655 - 13671.
[1] 马琦琦,孙赞东. 基于叠前PP-PS波联合广义线性反演的弹性模量提取方法[J]. 应用地球物理, 2018, 15(3-4): 466-480.
[2] 檀文慧,巴晶,郭梦秋,李辉,张琳,于庭,陈浩. 致密油粉砂岩脆性特征实验分析研究[J]. 应用地球物理, 2018, 15(2): 175-187.
[3] 马霄一,王尚旭,赵建国,殷晗钧,赵立明. 部分饱和条件下砂岩的速度频散实验室测量和Gassmann流体替换[J]. 应用地球物理, 2018, 15(2): 188-196.
[4] 郭桂红,闫建萍,张智,José Badal,程建武,石双虎,马亚维. 流体饱和孔隙定向裂缝储层中地震波衰减的模拟分析[J]. 应用地球物理, 2018, 15(2): 311-317.
[5] 沙志彬, 张明, 张光学, 梁金强, 苏丕波. 利用四分量OBS数据揭示南海北部陆坡天然气水合物分布及速度特征[J]. 应用地球物理, 2015, 12(4): 555-563.
[6] 张如伟, 李洪奇, 张宝金, 黄捍东, 文鹏飞. 基于叠前地震AVA反演的天然气水合物沉积物识别[J]. 应用地球物理, 2015, 12(3): 453-464.
[7] 黄捍东, 王彦超, 郭飞, 张生, 纪永祯, 刘承汉. 基于Zoeppritz方程的叠前地震反演方法研究及其在流体识别中的应用[J]. 应用地球物理, 2015, 12(2): 199-211.
[8] 刘财, 李博南, 赵旭, 刘洋, 鹿琪. 基于频变AVO技术对多尺度裂缝内流体属性反演与识别[J]. 应用地球物理, 2014, 11(4): 384-394.
[9] 杨佳佳, 何兵寿, 张建中. 海底天然气水合物OBS多分量地震正演模拟[J]. 应用地球物理, 2014, 11(4): 418-428.
[10] 李传辉, 赵倩, 徐红军, 冯凯, 刘学伟. 基于核磁共振测量的南海神狐海域天然气水合物对地层渗透率的影响研究[J]. 应用地球物理, 2014, 11(2): 207-214.
[11] Stuart Crampin, 高原. 两种类型微裂隙[J]. 应用地球物理, 2014, 11(1): 1-8.
[12] 刘迁迁, 魏东平, 孙振添, 张晓惠. 利用气象地温资料计算区域地球表面平均热流[J]. 应用地球物理, 2013, 10(4): 496-505.
[13] 龚雪萍, 张峰, 李向阳, 陈双全. 基于横波射线弹性阻抗的岩性和流体识别研究[J]. 应用地球物理, 2013, 10(2): 145-156.
[14] 李景叶, 陈小宏. 地震尺度下碳酸盐岩储层的岩石物理建模方法[J]. 应用地球物理, 2013, 10(1): 1-13.
[15] 谭茂金, 邹友龙, 张晋言, 赵昕. T2, T1)二维核磁共振数值模拟与流体响应分析[J]. 应用地球物理, 2012, 9(4): 401-413.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司