APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (2): 186-196    DOI: 10.1007/s11770-014-0431-7
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
多波高斯束叠前深度偏移速度分析
韩建光1,2,王赟3,韩宁4,邢占涛1,芦俊5
1. 中国科学院地质与地球物理研究所,北京 100029
2. 中国科学院大学,北京  100049
3. 中国科学院地球化学研究所,贵阳 550002
4. 西南大学资源环境学院,重庆 400716
5. 中国地质大学(北京),北京 100083
Multiwave velocity analysis based on Gaussian beam prestack depth migration
Han Jian-Guang1,2, Wang Yun3, Han Ning4, Xing Zhan-Tao1, and Lu Jun5
1. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.
2. University of Chinese Academy of Sciences, Beijing 100049, China.
3. Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China.
4. College of Resources and Environment, Southwest University, Chongqing 400716, China.
5. China University of Geosciences (Beijing), Beijing 100083, China.
 全文: PDF (1032 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 多分量地震资料叠前深度偏移技术可以对地下复杂地质构造进行更准确的成像,精确成像的前提是获取准确的纵横波偏移速度。本文采用高斯束偏移方法对多波地震数据进行偏移速度分析,首先分别给出纵波和转换波共偏移距域高斯束叠前深度偏移方法原理,在此基础上抽取纵波和转换波偏移距域共成像点道集;然后根据共成像点道集拉平准则,分别对纵波和横波速度进行更新;当两种波成像深度不一致时,对纵波和转换波成像剖面进行深度匹配,完成高精度的纵横波偏移速度分析。模型数据和实际资料试算表明,该方法是一种有效的多波偏移速度分析方法。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩建光
王赟
韩宁
邢占涛
芦俊
关键词高斯束偏移   多波   偏移速度分析   共成像点道集     
Abstract: Prestack depth migration of multicomponent seismic data improves the imaging accuracy of subsurface complex geological structures. An accurate velocity field is critical to accurate imaging. Gaussian beam migration was used to perform multicomponent migration velocity analysis of PP- and PS-waves. First, PP- and PS-wave Gaussian beam prestack depth migration algorithms that operate on common-offset gathers are presented to extract offset-domain common-image gathers of PP- and PS-waves. Second, based on the residual moveout equation, the migration velocity fields of P- and S-waves are updated. Depth matching is used to ensure that the depth of the target layers in the PP- and PS-wave migration profiles are consistent, and high-precision P- and S-wave velocities are obtained. Finally, synthetic and field seismic data suggest that the method can be used effectively in multiwave migration velocity analysis.
Key wordsGaussian beam migration   multiwave   migration velocity analysis   common-image gathers   
收稿日期: 2013-12-26;
基金资助:

本研究由国家科技重大专项(编号:2011ZX05035-001-006HZ、2011ZX05008-006-22、2011ZX05049-01-02和2011ZX05019-003)、国家自然科学基金项目(编号:41104084)和中国石油科技创新基金项目(编号:2011D-5006-0303)联合资助。

引用本文:   
韩建光,王赟,韩宁等. 多波高斯束叠前深度偏移速度分析[J]. 应用地球物理, 2014, 11(2): 186-196.
HAN Jian-Guang,WANG Bin,HAN Ning et al. Multiwave velocity analysis based on Gaussian beam prestack depth migration[J]. APPLIED GEOPHYSICS, 2014, 11(2): 186-196.
 
[1] AI-Yahya, K., 1989, Velocity analysis by iterative profile migration: Geophysics, 54(6), 718-729.
[2] Al-Zayer, R. M., and Tsvankin, I., 2005, Image gathers of SV-waves in homogeneous and factorized VTI media: Geophysics, 70(5), D55-D64.
[3] erveny, V., 1983, Synthetic body wave seismograms for laterally varying layered structures by the Gaussian beam method: Geophysical Journal of the Royal Astronomical Society, 73, 389-426.
[4] erveny, V., Popov, M. M., and Psencik, I., 1982, Computation of wave fields in inhomogeneous media—Gaussian beam approach: Geophysical Journal of the Royal Astronomical Society, 70, 109-128.
[5] Dai, H., and Li, X. Y., 2005, Accuracy of a simplified moveout formula for PS converted-waves in multi-layered media: 75th Annual International Meeting, SEG, Expanded Abstracts, 1010-1013.
[6] Dai, H., and Li, X. Y., 2007, Velocity model updating in prestack Kirchhoff time migration for PS converted waves: Part I-Theory: Geophysical Prospecting, 55, 525-547.
[7] Du, Q. Z., Li, F., Ba, J., Zhu, Y. T., and Hou, B., 2012, Multicomponent joint migration velocity analysis in the angle domain for PP-waves and PS-waves: Geophysics, 77(1), U1-U13.
[8] Gray, S. H., 2005, Gaussian beam migration of common-shot records: Geophysics, 70(4), S71-S77.
[9] Gray, S. H., and Bleistein, N., 2009, True-amplitude Gaussian-beam migration: Geophysics, 74(2), S11-S23.
[10] Hale, D., 1992a, Migration by the Kirchhoff, slant stack and Gaussian beam methods: Colorado School of Mines Center for Wave Phenomena Report 121.
[11] Hale, D., 1992b, Computational aspects of Gaussian beam migration: Colorado School of Mines Center for Wave Phenomena Report 139.
[12] Hill, N. R., 1990, Gaussian beam migration: Geophysics, 55, 1416-1428.
[13] Hill, N. R., 2001, Prestack Gaussian-beam depth migration: Geophysics, 66, 1240-1250.
[14] Lafond, C. F., and Levander, A. R., 1993, Migration moveout analysis and depth focusing: Geophysics, 58(1), 91-100.
[15] Lee, W., and Zhang, L., 1992, Residual shot profile migration: Geophysics, 57(6), 815-82.
[16] Liu, Z. Y., 1995, Migration velocity analysis [D]. Colorado: Center for Wave Phenomena, Colorado School of Mines.
[17] Liu, Z. Y., 1997, An analytical approach to migration velocity analysis: Geophysics, 62(4), 1238-1249.
[18] Liu, Z. Y., and Bleistein, N., 1994, Velocity analysis by perturbation: 64th Annual International Meeting, SEG, Expanded Abstracts, 1191-1194.
[19] Liu, Z. Y., and Bleistein, N., 1995, Migration velocity analysis-theory and an iterative algorithm: Geophysics, 60(1), 142-153.
[20] Lu, J., Wang, Y., and Yao, C., 2012, Separating P- and S-waves in an affine coordinate system: Journal of Geophysics and Engineering, 9, 12-18.
[21] Maria, D., and Robert, R. S., 1998, Migration velocity analysis by perturbation for converted waves: CREWES Research Report, 10(28).
[22] Nowack, R. L., 2003, Calculation of synthetic seismograms with Gaussian beams: Pure and Applied Geophysics, 160, 487-507.
[23] Nowack, R. L., Chen, W. P., and Tseng, T. L., 2010, Application of Gaussian-beam migration to multiscale imaging of the lithosphere beneath the Hi-CLIMB array in Tibet: Bulletin of the Seismological Society of America, 100(4), 1743-1754.
[24] Nowack, R. L., Dasgupta, S., Schuster, G. T., and Sheng, J. M., 2006, Correlation migration using Gaussian beams of scattered teleseismic body waves: Bulletin of the Seismological Society of America, 96(1), 1-10.
[25] Nowack, R. L., Wang, C. P., Kruse, U., and Dasgupta, S., 2007, Imaging offsets in the Moho: Synthetic tests using Gaussian Beams with teleseismic waves: Pure and Applied Geophysics, 164, 1921-1936.
[26] Popov, M. M., Semtchenok, N. M., Popov, P. M., and Verdel, A. R., 2010, Depth migration by the Gaussian beam summation method: Geophysics, 75(2), S81-S93.
[27] Sahai, S. K., and Meek, R. A., 2003, S-wave velocity model building and updating for depth migration of converted wave data: 73th Annual International Meeting, SEG, Expanded Abstracts.
[28] Sava, P., and Biondi, B., 2004a, Wave-equation migration velocity analysis-I: Theory: Geophysical Prospecting, 52, 593-606.
[29] Sava, P., and Biondi, B., 2004b, Wave-equation migration velocity analysis-II: Subsalt imaging examples: Geophysical Prospecting, 52, 607-623.
[30] Sava, P., Biondi, B., Etgen, J., 2005, Wave-equation migration velocity analysis by focusing diffractions and reflections: Geophysics, 70(3), U19-U27.
[31] Wang, Y., Wang, W., and Yin, J. J., 2012a, A modified EOM method for PS-wave migration: Exploration Geophysics, 43, 156-161.
[32] Wang, W., Wang, Y., Yin, J. J., and Gao, X., 2012b, Error analysis of the converted wave deduced by equivalent velocity assumption: Exploration Geophysics, 43, 162-170.
[33] Yan, J., and Sava, P., 2010, Analysis of converted-wave extended images for migration velocity analysis: 80th Annual International Meeting, SEG, Expanded Abstracts, 1666-1671.
[1] 谢玮,王彦春,刘学清,毕臣臣,张丰麒,方圆,Tahir Azeem. 基于改进的贝叶斯推断和最小二乘支持向量机的非线性多波联合AVO反演*[J]. 应用地球物理, 2019, 16(1): 70-82.
[2] 李闯,黄建平,李振春,王蓉蓉. 基于奇异值谱约束的叠前平面波最小二乘逆时偏移方法[J]. 应用地球物理, 2017, 14(1): 73-86.
[3] 方圆, 张丰麒, 王彦春. 基于双约束项的广义线性多波联合反演[J]. 应用地球物理, 2016, 13(1): 103-115.
[4] 刘少勇, 王华忠, 刘太臣, 胡英, 张才. 基于旅行时梯度场的Kirchhoff PSDM角道集生成方法研究[J]. 应用地球物理, 2015, 12(1): 64-72.
[5] 张凯, 李振春, 曾同生, 秦宁, 姚云霞. 基于起伏地表的层析速度反演方法研究[J]. 应用地球物理, 2012, 9(3): 313-318.
[6] 侯波, 陈小宏, 李景叶, 张孝珍. 考虑传播效应的多波保幅AVO正演[J]. 应用地球物理, 2011, 8(3): 207-216.
[7] 孙文博, 孙赞东, 朱兴卉. 相对保幅的角度域VSP逆时偏移[J]. 应用地球物理, 2011, 8(2): 141-149.
[8] 巩向博, 韩立国, 牛建军, 张晓培, 王德利, 杜立志. 联合速度建模及其在反射波法隧道超前预报中的应用[J]. 应用地球物理, 2010, 7(3): 265-271.
[9] 张凯, 李振春, 曾同生, 董晓春. 角度域共成像点道集剩余曲率法偏移速度分析[J]. 应用地球物理, 2010, 7(1): 49-56.
[10] 张凯, 李振春, 曾同生, 董晓春. 角度域共成像点道集剩余曲率法偏移速度分析[J]. 应用地球物理, 2010, 6(1): 49-56.
[11] 赵太银, 胡光岷, 贺振华, 黄德济. 二阶精度广义非线性全局最优的偏移速度反演方法[J]. 应用地球物理, 2009, 6(2): 138-149.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司