APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (2): 128-138    DOI: 110.1007/s11770-014-0433-5
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于四阶统计量的区域地震信号自动识别方法及应用
刘希强,蔡寅,赵瑞,曲保安,赵银刚,冯志军,李红
山东省地震局,济南 250014
An automatic seismic signal detection method based on fourth-order statistics and applications
Liu Xi-Qiang1, Cai Yin1, Zhao Rui1, Zhao Yin-Gang1, Qu Bao-An1, Feng Zhi-Jun1, and Li Hong1
1. Earthquake Administration of Shandong Province, Jinan 250014, China.
 全文: PDF (1033 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地震信号的实时、自动、准确识别对于地震自动速报和地震预警十分重要。本文基于波或波在能量或频率方面的差异特征变化,提出了一种用来自动探测区域地震事件的改进型特征函数(CTF)方法以及把四阶统计量函数(BKCF)和赤池信息准则函数(AIC)相结合来测定直达波震相到时的方法。仿真信号试验分析表明,观测数据的四阶统计量函数(BKCF)对信号与噪声在能量和(或)频率方面的微弱差异变化具有较高的分辨能力。为了进一步提高 波震相到时测定的精度,本文首先对指定时段的P波记录进行偏振特性分析,其次对含有P波的 波记录进行偏振滤波处理,再次应用上述方法测定震相到时。与传统算法相比,基于山东测震台网记录的区域地震震例分析结果表明,使用本文提出的方法能够大幅度降低地震事件误检、漏检率,进一步提高了震相识别精度。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘希强
蔡寅
赵瑞
曲保安
赵银刚
冯志军
李红
关键词区域地震事件   直达波震相   自动识别新方法   应用     
Abstract: Real-time, automatic, and accurate determination of seismic signals is critical for rapid earthquake reporting and early warning. In this study, we present a correction trigger function (CTF) for automatically detecting regional seismic events and a fourth-order statistics algorithm with the Akaike information criterion (AIC) for determining the direct wave phase, based on the differences, or changes, in energy, frequency, and amplitude of the direct P- or S-waves signal and noise. Simulations suggest for that the proposed fourth-order statistics result in high resolution even for weak signal and noise variations at different amplitude, frequency, and polarization characteristics. To improve the precision of establishing the S-waves onset, first a specific segment of P-wave seismograms is selected and the polarization characteristics of the data are obtained. Second, the S-wave seismograms that contained the specific segment of P-wave seismograms are analyzed by S-wave polarization filtering. Finally, the S-wave phase onset times are estimated. The proposed algorithm was used to analyze regional earthquake data from the Shandong Seismic Network. The results suggest that compared with conventional methods, the proposed algorithm greatly decreased false and missed earthquake triggers, and improved the detection precision of direct P- and S-wave phases.
Key wordsSeismic signal   P and S- waves   automatic detection   correction trigger function   
收稿日期: 2014-01-19;
基金资助:

本研究由国家科技支撑计划课题(编号:2012BAK19B04)和中国地震局地震科技星火计划攻关项目(编号:XH12029)联合资助。

引用本文:   
刘希强,蔡寅,赵瑞等. 基于四阶统计量的区域地震信号自动识别方法及应用[J]. 应用地球物理, 2014, 11(2): 128-138.
LIU Xi-Qiang,CAI Yin,ZHAO Rui et al. An automatic seismic signal detection method based on fourth-order statistics and applications[J]. APPLIED GEOPHYSICS, 2014, 11(2): 128-138.
 
[1] Amoroso, O., Maercklin, N., and Zollo, A., 2012, S-wave identification by polarization filtering and waveform coherence analyses: Bulletin of the Seismological Society, America, 102, 854 - 861.
[2] Anant, S. K., and Dowla, F. U., 1997, Wavelet transform methods for phase identification in three-component seismogram: Bulletin of the Seismological Society, America, 87, 1598 - 1612.
[3] Allen, R.V., 1978, Automatic earthquake recognition and timing from single traces: Bulletin of the Seismological Society, America, 68, 1521 - 1532.
[4] Allen, R. V., 1982, Automatic phase pickers: their present use and future prospects: Bulletin of the Seismological Society, America, 72, 225 - 242.
[5] Aster, R., Shearer, P., and Berger, J., 1990, Quantitative measurements of shear wave polarizations at the Anza seismic network, southern California: implications for shear wave splitting and earthquake prediction: J. Geophys. Res., 95, 12449 - 12473.
[6] Baer, M., and Kradolfer, U., 1987, An automatic phase picker for local and teleseismic events: Bulletin of the Seismological Society, America, 77, 1437 - 1445.
[7] Bai, C.Y., and Kennett, B. L. N., 2000, Automatic phase-detection and identification by full use of a single three-component broadband seismogram: Bulletin of the Seismological Society, America, 90, 187 - 198.
[8] Cichowicz, A., 1993, An automatic S-phase picker: Bulletin of the Seismological Society, America, 83, 180 - 189.
[9] Earle, P.S., and Shearer, P.M., 1994, Characterization of global seismograms using an automatic-picking algorithm: Bulletin of the Seismological Society, America, 84, 366 - 376.
[10] Gentili, S., and Michelini, A., 2006, Automatic picking of P and S phases using a neural tree: J. Seismol., 10, 39-63.
[11] He, Y., Jin, P., Xiao,W. G., and Wang, H. C., 2014, A comparative study between ICSS and AR-AIC algorithms on onset time estimation for seismic signals: Acta Seismologica Sinica (in Chinese), 36, 209 - 219.
[12] Hildyard, M. W., Nippress, S. E. J., and Rietbrock, A., 2008,Event detection and phase picking using a time-domain estimate of predominate period Tpd: Bulletin of the Seismological Society, America, 98, 3025 - 3032.
[13] Joswig, M., 1990, Pattern recognition for earthquake detection: Bulletin of the Seismological Society, America, 80, 170 - 186.
[14] Kanamori, H., 2005, Real-time seismology and earthquake damage mitigation: Ann. Rev. Earth Planet. Sci. 33, 195 - 214.
[15] Küperkoch, L., Meier, T., Lee, J., Friederich, W., and EGELADOS Working Group,2010, Automated determination of P-phase arrival times at regional and local distances using higher order statistics: Geophys. J. Int., 181, 1159 - 1170.
[16] Küperkoch, L., Meier, T., Brüstle, A., Lee, J., Friederich, W., and EGELADOS working group, 2012, Automated determination of S-phase arrival times using autoregressive prediction: application to local and regional distances: Geophys. J.Int., 188, 687 - 702.
[17] Leonard, M., and Kennett, B. L. N., 1999, Multi-component autoregressive techniques for the analysis of seismograms: Phys. Earth Planet. Int., 113, 247 - 263.
[18] Leonard, M., 2000, Comparison of manual and automatic onset time picking: Bulletin of the Seismological Society, America, 90, 1384 - 1390.
[19] Liu, X. Q., Zhou, Y.W., Qu, J.H., Shi, Y.Y., and Li, B.,2009, Real-time detection of regional events and automatic P-phase identification from the vertical component of a single station record: Acta Seismologica Sinica, 31, 260 - 271.
[20] Maeda, N., 1985, A method for reading and checking phase times in autoprocessing system of seismic data: Zisin = Jishin, 38, 365 - 379.
[21] Mousset, E., Cansi, Y., Crusem, R., and Souchet, Y., 1996, A connectionist approach for automatic labeling of regional seismic phases using a vertical component seismogram: Geophys. Res. Lett., 23, 681 - 684.
[22] Odaka, T., Ashiya, K., Tsukada, S., Sato, S., Ohtake, K., Nozaka, D., 2003, A new method of quickly estimating epicentral distance and magnitude from a single seismic record: Bulletin of the Seismological Society, America, 93, 526 - 532.
[23] Qu, B. A., Liu, X. Q., Cai, Y., Fan, X. Y., Lin, X. E., Yu, Q. M., Zhao, R., Li, B., and Zhou, Y. W., 2014, Method for real-time automatic identification of S-phase: application to local seismicity: Acta Seismologica Sinica (in Chinese), 36, 200 - 208.
[24] Saragiotis, C. D., Hadjileontiadis, L.J., and Panas, S.M., 2002, PAI-S/K: a robust automatic seismic P-phase arrival identification scheme: IEEE Trans. Geosci. Remote Sens., 40, 1395 - 1404.
[25] Sleeman, R., & van Eck, T., 1999, Robust automatic P-phase picking: an online implementation in the analysis of broadband seismogram recordings: Phys. Earth planet. Inter., 113, 265 - 275.
[26] Vassallo, M., Satriano, C., and Lomax, A., 2012, Automatic picker developments and optimization: A strategy for improving the performances of automatic phase pickers: Seismological Research Letters, 83, 541 - 554.
[27] Wang, J., and Teng, T. L., 1997, Identification and picking of S phase using an artificial neural network: Bulletin of the Seismological Society, America, 87, 1140 - 1149.
[28] Zhang, H. J., Thurber, C., and Rowe, C., 2003, Automatic P-wave arrival detection and picking with multiscale wavelet analysis for single-component recordings: Bulletin of the Seismological Society, America, 93, 904 - 912.
[1] 李术才, 聂利超, 刘斌, 宋杰, 刘征宇, 苏茂鑫, 徐磊, 孙怀凤. 基于空间形态先验约束的三维电阻率反演成像方法[J]. 应用地球物理, 2013, 10(4): 361-372.
[2] 张明华, 贺颢, 王成锡. 中国区域重力信息系统建设[J]. 应用地球物理, 2011, 8(2): 170-175.
[3] 孙斌, 董平, 王冲, 蒲晓轩, 吴永敬. 灌注桩钢筋笼磁异常的定量化研究[J]. 应用地球物理, 2009, 6(3): 275-286.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司