APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (2): 119-127    DOI: 10.1007/s11770-014-0437-1
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
Vp和Vp/Vs联合反演:在日本东北地区深部结构成像
王志1,2
1. 成都理工大学油气藏地质与开发工程国家重点实验室,四川 成都 610059
2. 中国科学院南海海洋研究所,边缘海地质重点实验室,广州 510301
Joint inversion of P-wave velocity and Vp/Vs ratio: imaging the deep structure in the Northeastern Japan
Wang Zhi1,2
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China.
2. Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China.
 全文: PDF (1145 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 Vp/Vs比值(或泊松比)对于地球内部热状态十分敏感。本文提出了一种新的反演方法:通过采用纵、横波走时数据对(从相同的震源产生的P和S波被同一台站记录)来联合反演纵波速度(Vp)和纵、横波速度比(Vp/Vs),然后单独反演横波速度Vs,在反演过程中同时对地震参数进行定位。该方法直接把Vp/Vs作为一个模型参数,首先通过反演纵波相对走时残差获得沿纵波射线路径的相对幔度扰动值(q),然后把它代入到沿横波射线路径的反演中,通过反复迭代直到网格单元内的走时残差小于10-4,由此能获得比采用从独立反演获得的Vp和Vs计算出Vp/Vs的方法更精确的速度比值。该方法不需要假设P和S波的射线路径一致,它是沿着P和S波射线路径计算相对幔度扰动值。因此,它与采用纵、横波走时差(S-P)数据来反演泊松比的方法相比,具有较小的偏差。该新方法被应用到反演日本东北地区的壳幔速度及波速比结构的研究中,获得了较好的效果。反演结果表明,在日本东北地区,太平洋俯冲板块为一高Vp、高Vs和低Vp/Vs异常区,而在活火山下方的浅部地幔楔以及背弧深部地区为低Vp,低Vs和高Vp/Vs异常。虽然这些特征在前人的研究中已经报道过,但与前人的研究结果相比,本次研究所获得的Vp/Vs的空间分布具有较小的分散性,同时,它的分布特征能较好的与地震波速度结构相吻合。除了能获得较好的地震波速度与波速比之外,采用该新方法获得的结果对于定量讨论俯冲板块的热过程十分有用。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王志
关键词地震层析成像   纵横波走时对   太平洋俯冲板块   地幔楔     
Abstract: A new inversion scheme is presented to obtain three-dimensional images of P-wave velocity (Vp) and P–S-wave velocity ratio (Vp/Vs) using P- and S-phase pairs, i.e., the same source–receiver pairs for the P- and S-wave arrival-time data. The S-wave velocity (Vs) was separately inverted using the S-phase arrival times. The earthquake hypocenters were simultaneously relocated in the joint inversion. The method considers the Vp/Vs anomaly as a model parameter in the inversion.  The proposed method thus provides a more robust calculation of the Vp/Vs anomaly than the conventional method of dividing Vp by Vs. The method also takes into account the ray path difference between P- and S-waves, and hence yields a less biased Vp–Vs ratio than the method of inverting S–P-wave data for Vp and Vp/Vs anomalies under the assumption of identical P and S ray paths. The proposed method was used to image the crust and upper mantle in northeastern (NE) Japan taking advantage of a large number of high-quality arrival times of P- and S-wave source–receiver pairs. The inverted structures suggest that the subducting slab of the Pacific plate is an inclined zone of high-Vp and Vs anomalies with low Vp/Vs perturbation. The mantle wedge is characterized by low-Vp, low-Vs, and high-Vp/Vs anomalies at shallow depths beneath active volcanoes. These features are also observed at greater depths in the back-arc region. Although these features have been previously reported, the Vp/Vs anomaly pattern obtained in this study shows much less scatter and is much better correlated with the seismic velocity perturbation patterns than previous studies. The proposed method can be used, in conjunction with velocity anomaly patterns, to quantify thermal processes associated with plate subduction.
Key wordsSeismic tomography   P and S source–receiver pairs   Pacific subduction zone   Mantle wedge   
收稿日期: 2013-01-07;
基金资助:

本研究由中国科学院百人计划(17314059)、国家自然科学基金(编号:41372229)、教育部新世纪优秀人才计划(编号:NCET-10-0887)、四川省杰出青年基金(编号:2010JQ0033)和地质灾害防治与地质环境保护国家重点实验室开放基金以及成都理工大学优秀科研创新团队培养计划联合资助。

引用本文:   
王志. Vp和Vp/Vs联合反演:在日本东北地区深部结构成像[J]. 应用地球物理, 2014, 11(2): 119-127.
WANG Zhi. Joint inversion of P-wave velocity and Vp/Vs ratio: imaging the deep structure in the Northeastern Japan[J]. APPLIED GEOPHYSICS, 2014, 11(2): 119-127.
 
[1] Chevrot, S., and van der Hilst, R. D., 2000, The Poisson ratio of the Australian crust: Geological and geophysical implications: Earth Planet. Sci. Letts., 183, 121-132.
[2] Eberhart-Phillips, D., 1986, Three-dimensional velocity structure in Northern California Coast Ranges from inversion of local earthquake arrival times: Bull. Seismol. Soc. Am., 76, 1025-1052.
[3] Hyndman, R. D., 1988, Dipping seismic reflectors, electrically conductive zones, and trapped water in the crust over a subducting plate: J. Geophys. Res., 93, 13391-13405.
[4] Hasegawa, H., Nakajima, J., Umino, N., and Miura, S., 2005, Deep structure of the northeastern Japan arc and its implications for crustal deformation and shallow seismic activity: Tectonophysics, 403, 59-75.
[5] Koch, M., 1992, Bootstrap inversion for vertical and lateral variations of the S wave structure and the Vp/Vs-ratio from shallow earthquakes in the Rhinegraben seismic zone: Tectonophysics, 210, 91-115.
[6] Lin, G., and Shearer, P., 2007, Estimating local Vp/Vs ratios within similar earthquake clusters: Bull. Seismol. Soc. Am., 97, 379-388.
[7] Louie J. N., 1990, Physical properties of deep crustal reflectors in southern California from multioffset amplitude analysis: Geophysics, 55, 670-681.
[8] Matsubara, M, Obara, K., and Kasahara, K., 2008, Three-dimensional P- and S-wave velocity structures beneath the Japan Islands obtained by high-density seismic stations by seismic tomography: Tectonophysics, 454, 27, 86-103.
[9] Mitsuhata, Y., Ogawa, Y., Mishina, M., Kono, T., Yokokura, T., and Uchida, T., 2001, Electromagnetic heterogeneity of the seismogenic region of 1962 M6.5 Northern Miyagi Earthquake, northeastern Japan: Geophys. Res. Letts., 28, 4371-4374.
[10] Nakajima, J., Matsuzawa, T., Hasegawa, A., and Zhao, D., 2001, Seismic imaging of arc magma and fluids under the central part of northeastern Japan: Tectonophysics, 341, 1-17.
[11] Pamic, J., Scavanicr, S., Medjimorec, S., 1973, Mineral Assemblages of Amphibolites Associated with Alpine-Type Ultramafics in the Dinaride Ophiolite Zone Yugoslavia: J. Petrology, 14, 133-157.
[12] Takei, Y., 2001, Stress-induced anisotropy of partially molten media inferred from experimental deformation of a simple binary system under acoustic monitoring: J. Geophys. Res., 106, B1, doi:10.1029/2000JB900361.
[13] Thurber, C.H., 1993, Local earthquake tomography: velocity and Vp/Vs theory, H.M. Iyer, K. Hirahara, Editors, Seismic Tomography: Theory and Practice: CRC Press, Boca Raton, Fla., 563-580.
[14] Tsuji, Y., Nakajima, J., and Hasegawa, A., 2008, Tomographic evidence for hydrated oceanic crust of the Pacific slab beneath northeastern Japan: Implication for water transportation in subduction zones: Geophys. Res. Letts., 35, L14308, doi:10.1029/2008GL034461.
[15] Zhang, H., and Thurber, C.H., Bedrosian, P., 2009, Joint inversion for Vp, Vs, and Vp/Vs at SAFOD, Parkfield, California: Geochemistry, Geophysics, Geosystems, 10, Q11002, doi:10.1029/2009GC 002709
[16] Wang, Z., and Zhao, D., 2005, Seismic imaging of the entire arc of Tohoku and Hokkaido in Japan by using P-wave, S-wave and sP depth-phase data: Phys. Earth Planet. Int., 152, 144-162.
[17] Wang, Z., Zhao, D., Mishra, O. P., and Yamada, A., 2006, Structural heterogeneity and its implications for the low frequency tremors in Southwest Japan: Earth Planet. Sci. Letts., 251, 66-78.
[18] Wang, Z., and Zhao, D., 2006, Seismic images of the source area of the 2004 Mid-Niigata prefecture earthquake in Northeast Japan: Earth Planet. Sci. Letts., 244, 16-31.
[19] Wang, Z., Fukao, Y., Kodaira, S., and Huang, R., 2008, Role of fluids in the initiation of the 2008 Iwate earthquake M7.2 in northeast Japan: Geophys. Res. Letts., 35, L24303, doi:10.1029/2008GL035869.
[20] Wessel, P., and Smith, W., 1995, New version of generic mapping tools released: EOS Trans., AGU 76, 329.
[21] Zhao, D., Hasegawa, A., and Horiuchi, S., 1992, Tomographic imaging of P and S wave velocity structure beneath northeastern Japan: J. Geophys. Res., 97, 19909-19928.
[22] Zhao, D., Wang, Z., Umino, N., and Hasegawa, A., 2009, Mapping the mantle wedge and interpolate thrust zone of the northeast Japan arc: Tectonophysics, 467, 89-106.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司