APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (2): 215-222    DOI: 10.1007/s11770-014-0435-3
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于岩石导电效率建立碳酸盐岩储层饱和度的计算方法
李雄炎1,秦瑞宝1,刘春成1,毛志强2
1. 中海油研究总院,北京 100027;
2. 中国石油大学地球物理与信息工程学院,北京 102249
Calculation of saturation in carbonate reservoirs based on electrical efficiency
Li Xiong-Yan1, Qin Rui-Bao1, Liu Chun-Cheng1, and Mao Zhi-Qiang2
1. CNOOC Research Institute, Beijing 100027, China.
2. College of Geophysics and Information Engineering, China University of Petroleum, Beijing 102249, China.
 全文: PDF (1048 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 由于孔隙型碳酸盐岩储层的复杂孔隙结构和强非均质性,岩石导电效率与含水孔隙度之间理想的线性关系相对复杂或并不存在,故前人基于岩石导电效率建立含水饱和度的计算公式并不完全适用于碳酸盐岩储层。基于岩石导电效率,推导了岩石导电效率的计算公式,阐明了岩石导电效率与含水孔隙度之间线性关系相对复杂或并不存在的根本原因,发现了岩石导电效率与电阻率之间的幂函数关系,分析了所建立含水饱和度计算公式误差的主控因素,得出了岩石导电效率的计算精度是该方法是否能推广应用的关键。与Archie公式相比,基于岩石导电效率建立的含水饱和度计算公式能更准确地计算研究靶区孔隙型碳酸盐岩储层的含水饱和度。在伊拉克某油田和印尼某气田3口井碳酸盐岩储层中的应用,表明当计算岩石导电效率的相对误差不大于0.1时,所计算储层含水饱和度的绝对误差不大于0.1,基本满足孔隙型碳酸盐岩储层精细评价的需求。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李雄炎
秦瑞宝
刘春成
毛志强
关键词岩石导电效率   碳酸盐岩   饱和度   函数关系   误差分析     
Abstract: We derived an equation for saturation in carbonate reservoirs based on the electrical efficiency model in the case of lacking core data. Owing to the complex pore structure and strong heterogeneity in carbonate reservoirs, the relation between electrical efficiency and water porosity is either complex or linear. We proposed an electrical efficiency equation that accounts for the relation between electrical efficiency and water porosity. We also proposed a power-law relation between electrical efficiency and deep-formation resistivity and analyzed the factors controlling the error in the water saturation computations. We concluded that the calculation accuracy of the electrical efficiency is critical to the application of the saturation equation. The saturation equation was applied to the carbonate reservoirs of three wells in Iraq and Indonesia. For relative rock electrical efficiency error below 0.1, the water saturation absolute error is also below 0.1. Therefore, we infer that the proposed saturation equation generally satisfies the evaluation criteria for carbonate reservoirs.
Key wordsRock electrical efficiency   carbonate   saturation   functional relationship   error analysis   
收稿日期: 2013-05-29;
基金资助:

本研究由国家科技重大专项(编号:2011ZX05030)资助。

引用本文:   
李雄炎,秦瑞宝,刘春成等. 基于岩石导电效率建立碳酸盐岩储层饱和度的计算方法[J]. 应用地球物理, 2014, 11(2): 215-222.
LI Xiong-Yan,QIN Rui-Bao,LIU Chun-Cheng et al. Calculation of saturation in carbonate reservoirs based on electrical efficiency[J]. APPLIED GEOPHYSICS, 2014, 11(2): 215-222.
 
[1] Archie, G. E., 1942. The electrical resistivity log as an aid in determining some reservoir characteristics: Petroleum Transactions, AIME, 146, 54-62.
[2] Anderson, W. G., 1986. Wettability literature survey - part3: the effects of wettability on the electrical properties of porous media: Journal of Petroleum Technology, 38(12), 1371-1378.
[3] Ali Al G., Roberto, A., and Christopher, R. C., 2011. Cementation exponent estimation for complex carbonate reservoirs using a triple porosity model: SPE/DGS Saudi Arabia Section Technical Symposium and Exhibition, 15-18 May, Al-Khobar, Saudi Arabia, SPE 149104.
[4] Budebes, S., Saif, O., Al-Farisi, O., et al, 2011. Carbonate Archie exponents correction model and variable determination: SPE Reservoir Characterization and Simulation Conference and Exhibition, 9-11 October, Abu Dhabi, UAE, SPE 148377.
[5] Bruce, Z. S., Jeffry, G. H., and Donald, H. C., 2003. Physical model to explain the first Archie relationship and beyond: SPE Annual Technical Conference and Exhibition, 5-8 October, Denver, SPE 84300.
[6] Clavier, C., Coates, G. and Dumanoir, J., 1984. Theoretical and experimental bases for the dual-water model for interpretation of shaly sands: SPE Journal, 24(2), 153-168.
[7] Gao, C. Q., and Tan, T. D., 2000. Identifying types of carbonate reservoir based on electrical conduction efficiency: Acta Petrolei Sinica, 21(5), 32-35.
[8] Gao, C. Q., 2003. Well logging evaluation of complex reservoirs: Petroleum Industry Press, Beijing.
[9] Herrick, D. C., and Kennedy, W. D., 1993. Electrical efficiency: a pore-geometric model for the electrical properties of rocks: SPWLA 34th Annual Logging Symposium, June 13-16, Calgary.
[10] Mahmood Akbar, Jan Steckhan, Masoume Tamimi et al, 2008. Estimating cementation factor (m) for carbonates using borehole images and logs: Abu Dhabi International Petroleum Exhibition and Conference, 3-6 November, Abu Dhabi, UAE, SPE 117786.
[11] Poupon, A., Loy, M. E. and Tixier, M. P., 1954. A contribution to electric log interpretation in shaly sands: Journal of Petroleum Technology, 6(6), 27-34.
[12] Rodolfo, S. B., Digitoil, Cintia Martin, et al, 2012. A new reservoir classification based on pore types improves characterization: SPE Latin America and Caribbean Petroleum Engineering Conference, 16-18 April, Mexico City, Mexico, SPE 152872.
[13] Simandoux, P., 1963. Dielectric measurements on porous media: application to the measurement of water saturation, study of the behavior of argillaceous formations: Revue de L’Institut Francais du Petrole, 18(S1), 193-215.
[14] Waxman, M. H. and Smits, L. J. M., 1968. Electrical conductivities in oil-bearing shaly sands: SPE Journal, 8(2), 107-122.
[15] Zeng, W. C., 1991. Well logging evaluation techniques of oil and gas reservoirs: Petroleum Industry Press, Beijing.
[16] Zhu, J. J., Geng, B., Geng, S. C. et al, 2003. Water saturation explanatory model of argillaceous sandstone under the macroscopically electric conduction mechanism: Petroleum Exploration and Development, 30(4), 75-77.
[1] 李诺, 陈浩, 张秀梅, 韩建强, 王健, 王秀明. 岩石基质模量与临界孔隙度的联合预测方法*[J]. 应用地球物理, 2019, 16(1): 15-26.
[2] 马霄一,王尚旭,赵建国,殷晗钧,赵立明. 部分饱和条件下砂岩的速度频散实验室测量和Gassmann流体替换[J]. 应用地球物理, 2018, 15(2): 188-196.
[3] 段茜,刘向君. 气水两相裂缝型介质孔隙流体微观分布模式及其声学响应特性[J]. 应用地球物理, 2018, 15(2): 311-317.
[4] 马劲风,李琳,王浩璠,谭明友,崔世凌,张云银,曲志鹏,贾凌云,张树海. CO2地质封存地球物理监测技术[J]. 应用地球物理, 2016, 13(2): 288-306.
[5] 李生杰, 邵雨, 陈旭强. 碳酸盐岩储层各向异性岩石物理建模与孔隙结构分析[J]. 应用地球物理, 2016, 13(1): 166-178.
[6] 曹呈浩,张宏兵,潘益鑫,滕新保. 中观局域流过渡频率及其与衰减峰值频率的联系研究[J]. 应用地球物理, 2016, 13(1): 156-165.
[7] 张如伟, 李洪奇, 张宝金, 黄捍东, 文鹏飞. 基于叠前地震AVA反演的天然气水合物沉积物识别[J]. 应用地球物理, 2015, 12(3): 453-464.
[8] 潘建国, 王宏斌, 李闯, 赵建国. 孔隙结构对致密碳酸盐岩地震岩石物理特征的影响分析[J]. 应用地球物理, 2015, 12(1): 1-10.
[9] 孙文杰, 李宁, 武宏亮, 王克文, 张宫. 孔洞型储层测井饱和度解释方程的确定及应用[J]. 应用地球物理, 2014, 11(3): 257-268.
[10] 于豪, 巴晶, Carcione Jose, 李劲松, 唐刚, 张兴阳, 何新贞, 欧阳华. 非均质碳酸盐岩储层岩石物理建模:孔隙度估算与烃类检测[J]. 应用地球物理, 2014, 11(1): 9-22.
[11] 郭玉倩, 马宏达, 石开波, 曹宏, 黄录忠, 姚逢昌, 胡天跃. 多孔颗粒上界限模型及其在塔里木碳酸盐岩中的应用[J]. 应用地球物理, 2013, 10(4): 411-422.
[12] 李景叶, 陈小宏. 地震尺度下碳酸盐岩储层的岩石物理建模方法[J]. 应用地球物理, 2013, 10(1): 1-13.
[13] 刘灵, 耿建华, 郭彤楼. 横波速度预测的边界加权平均法[J]. 应用地球物理, 2012, 9(4): 421-428.
[14] 聂建新, 巴晶, 杨顶辉, 晏信飞, 袁振宇, 乔海鹏. 基于Kelvin-Voigt黏弹性骨架的含非饱和流体孔隙介质BISQ模型[J]. 应用地球物理, 2012, 9(2): 213-222.
[15] 蒋炼, 文晓涛, 周东红, 贺振华, 贺锡雷. 碳酸盐岩孔隙结构参数构建与储层参数反演[J]. 应用地球物理, 2012, 9(2): 223-232.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司