APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (2): 223-234    DOI: 10.1007/s11770-014-0439-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
三维阵列侧向测井电极系设计及其响应模拟
尹成芳1,2,柯式镇1,2,许巍1,2,姜明1,2,张雷洁1,2,陶婕1,2
1.中国石油大学(北京)地球物理与信息工程学院,北京 102249
2.北京市地球探测与信息技术实验室,北京 102249
3D laterolog array sonde design and response simulation
Yin Cheng-Fang1,2, Ke Shi-Zhen1,2, Xu Wei1,2, Jiang Ming1,2, Zhang Lei-Jie1,2, and Tao Jie1,2
1. College of Geophysics and Information Engineering, China University of Petroleum, Beijing 102249, China.
2. Key Laboratory of Earth Prospecting and Information Technology, Beijing 102249, China.
 全文: PDF (1325 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文提出了一种将高分辨率阵列侧向和方位电极系综合在一起的三维阵列侧向测井电极系3D-LS,该电极系具有径向、纵向和周向探测能力。通过有限元数值模拟计算,考察了井眼尺寸、冲洗带电阻率、侵入深度、层厚及围岩电阻率对六种不同探测模式的影响,确定了电极系尺寸和探测特性。分析伪几何因子,低侵时电极系的探测深度最深可达1.5m,其值接近斯伦贝谢双侧向电极系深探测深度,而大于高分辨率方位侧向成像仪深探测深度,并且三维侧向测井电极系可提供多条径向不同深度曲线,可更好地描述地层侵入剖面。无限厚地层条件下,方位电极可识别出厚度0.1m的异常体,利用方位侧向曲线半幅点对应异常体厚度判断,对异常体纵向分层能力可达0.5m。高阻背景下,异常体的电阻率越低,越靠近井眼,方位越大于15度,越易被方位电极探测。数值模拟结果为后续三维侧向测井电极系的研究奠定了基础,对低阻异常评价具有一定的指导意义。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹成芳
柯式镇
许巍
姜明
张雷洁
陶婕
关键词三维侧向测井   电极系   数值模拟   有限元法   探测特性   低阻异常     
Abstract: A new three-dimensional laterolog array sonde (3D-LS) is presented. The 3D-LS is based on existing high-resolution laterolog array and azimuthal resistivity imaging sondes with radial, longitudinal, and circumferential detection abilities. Six investigation modes are designed using the 3D finite-element method and different investigation depths are simulated based on the pseudo-geometrical factor of the six modes. The invasion profile is described using multi-array radial logs. From the analysis of the pseudo-geometrical factor, the investigation depth of the 3D-LS is about 1.5 m for conductive invasion, which is close to that of the dual laterolog tool but greater than that of the highly integrated azimuthal laterolog sonde. The vertical and azimuthal resolution is also analyzed with the same method. The 3D-LS can detect low-resistivity anomalies of 0.5 m thickness and 15? around the borehole for infinitely thick formations. This study lays the foundation for more work on 3D laterolog array sonde for evaluating low-resistivity anomalies.
Key wordsThree-dimensional laterolog   sonde   numerical modeling   FEM   detectivity   low-resistivity   
收稿日期: 2014-01-22;
基金资助:

本研究由国家重大油气专项课题(编号:2011ZX05020-009)资助。

引用本文:   
尹成芳,柯式镇,许巍等. 三维阵列侧向测井电极系设计及其响应模拟[J]. 应用地球物理, 2014, 11(2): 223-234.
YIN Cheng-Fang,KE Shi-Zhen,XU Wei et al. 3D laterolog array sonde design and response simulation[J]. APPLIED GEOPHYSICS, 2014, 11(2): 223-234.
 
[1] Coggon, J. H., 1971, Electromagnetic and electrical modeling by the finite element method: Geophysics, 36(1), 132-155.
[2] Davies, D. H., Ollivier, F., Gounot, M. T., Seeman, B., Trouiller, J. C., Dominique, B., Ferreira, A., Pittman, D. J., Mahaly Randrianavony, Smits, J. W., Anderson, B. I., and Lovell, J., 1994, Azimuthal resistivity imaging: anew-generation laterolog: SPE Formation Evaluation, 165-174.
[3] Fan, Y. R., Jiang, J. L., Deng, S. G., and Chen, H., 2009, Numerical simulation of high resolution array lateral logging responses: Well Logging Technology, 33(4), 333-336.
[4] Feng, L. W., Tang, T. Z., He, F., Xu, Y., Sun, J. J., and He, X. Z., 2013, On the response characteristics of high resolution Dual Laterolog and common Dual Laterolog: Well Logging Technology, 37(5), 481-486.
[5] He, F., Ma, X., Feng, L. W., Li, Q., Cao, J. Z, and Liu, W., 2013, HAL6505 array laterolog tool: Oil Furum, (2), 59-62.
[6] Huang, J. Z., Zhu, J., Li, M. X., and Wang, Z., 2001, A new azimuthal resistivity imaging tool: China Patent, CN00226552.4.
[7] Itskovich, G. B., Mezzatesta, A. G., Strack, K. M., and Tabarovsky, L. A., 1998, High-definition Lateral Log-resisitivity device: basic physics and resolution: SPWLA 39th Annual Logging Symposium, 1-12.
[8] Li, D. Q., 1984, The application of finite-element method in electric well logging: Petroleum Industry Press, Beijing.
[9] Li, Z. Q., Yang, Z. Q, Wang, J. J, Yang, C., Yang, Y. J., Ju, C., Huang, Y., Zheng, J. X., Zhao, L. X., and Ji, X. F., 2012, A high resolution azimuthal resistivity laterolog tool and logging method: China Patent, CN201210233337.8.
[10] Li, Z. Q., Yang, Z. Q, Wang, J. J, Yang, C., Yang, Y. J., Ju, C., Huang, Y., Zheng, J. X., Zhao, L. X., and Ji, X. F., 2013, High-resolution azimuthal resistivity laterolog tool: China Patent, CN201220326167.3.
[11] Liu, D. J., Ma, Z. H., Xing, X. N., Li, H., and Guo, Z. Y., 2013, Numerical simulation of LWD resistivity response of carbonate formation using self-adaptive hp-FEM: Applied Geophysics, 10(1), 97-108.
[12] Schlumberger, 2013, Log Interpretation charts.
[13] Scholberg, A. 1973, Apparatus for determing the resistivity of a subsurface earth formation at different lateral distances from a borehole wall: US Patent, 3772589.
[14] Sheng, J. G., 1984, Numerical analysis for electromagnetic fields: Science Press, Beijing.
[15] Smits, J. W., Benimelli, D., Dubourg, I., Faivre, O., Hoyle, D., Tourillon, V., Trouiller, J-C., and Anderson, B. I., 1995, High resolution from a new laterolog with azimuthal imaging: 70th SPE Annual Technical Conference and Exhibition, SPE 30584, 563-575.
[16] Smits, J. W., Dubourg, I., Lüling, M. G., Minerbo, G. N., Koelman, J. M. V. A., Hoffman, L. J. B., Lomas, A. T., Oosten, R. K. v. d., Schiet, M. J., and Dennis, R. N., 1998, Improved resistivity interpretation utilizing a new array laterolog tool and associated inversion processing: 73th SPE Annual Technical Conference and Exhibition, SPE 49328, 831-844.
[17] Suau, J., Grimaldi, P., Poupon, A., and Souhaite, P., 1972, The dual laterolog-Rxo Tool: Fall Meeting of the Society of Petroleum Engineers of AIME, SPE 4018, 1-44.
[18] Wang, X., Chen, H., and Wang, X. M., 2012, Dual laterolog borehole correction based on dynamic tool constants: Applied Geophysics, 9(4), 414-420.
[19] Wu, J., Xie, W. W., Xie, X. C., Zhang, J., and Xu, X. Q., 2008, Forward response analysis of array lateral logging tool: Journal of Xi’an Shiyou University (Natural Science Edition), 23(1), 73-80.
[20] Yang, W., 2002, ARI log responses to 3D anisotropic formations: Well Logging Technology, 26(1), 30-34.
[21] Yang, W., and Tao, G., 1999, Forward and inversion of azimuthal lateral resistivity logs: 69th SEG Annual Meeting, expanded abstract, 1-4.
[22] Yan, Z. W., 2006, ANSYS10.0 engineering electroma-gnetic analysis technology and example explanation: China Water Power Press, Beijing.
[23] Zeng, Y. G., Xu, G. H., and Song, G. X., 1982, Electromagnetic field finite element method: Science Press, Beijing.
[24] Zhang, G. J., 1986, Electrical logging: Petroleum Industry Press, Beijing.
[25] Zhu, J., and Feng, L. W., 2007, Analysis on numeric simulation of high-resolution dual laterolog (DLL) response: Oil Geophysical Prospecting, 42(4), 457-462.
[26] Zhu, J., Feng, L. W., Li, J. H., Zhao, Y. Z., and Wang, J. N., 2007, A new high resolution dual laterolog logging method: Well Logging Technology, 31(2), 118-123.
[1] 胡隽,曹俊兴,何晓燕,王权锋,徐彬. 水力压裂对断层应力场扰动的数值模拟[J]. 应用地球物理, 2018, 15(3-4): 367-381.
[2] 康正明,柯式镇,李新,米金泰,倪卫宁,李铭宇. 随钻多模式电阻率成像测井仪响应的三维有限元数值模拟[J]. 应用地球物理, 2018, 15(3-4): 401-412.
[3] 戴世坤,赵东东,张钱江,李昆,陈轻蕊,王旭龙. 基于泊松方程的空间波数混合域重力异常三维数值模拟[J]. 应用地球物理, 2018, 15(3-4): 513-523.
[4] 曹晓月,殷长春,张博,黄鑫,刘云鹤,蔡晶. 基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究[J]. 应用地球物理, 2018, 15(3-4): 556-565.
[5] 胡松,李军,郭洪波,王昌学. 水平井随钻电磁波测井与双侧向测井响应差异及其解释应用[J]. 应用地球物理, 2017, 14(3): 351-362.
[6] 黄威,贲放,殷长春,孟庆敏,李文杰,廖桂香,吴珊,西永在. 三维时间域航空电磁任意各向异性正演模拟[J]. 应用地球物理, 2017, 14(3): 431-440.
[7] 杨思通,魏久传,程久龙,施龙青,文志杰. 煤巷三维槽波全波场数值模拟与波场特征分析[J]. 应用地球物理, 2016, 13(4): 621-630.
[8] 付博烨,符力耘,魏伟,张艳. 超声岩石物理实验尾波观测中边界反射的影响分析[J]. 应用地球物理, 2016, 13(4): 667-682.
[9] 陶蓓,陈德华,何晓,王秀明. 界面不规则性对套后超声波成像测井响应影响的模拟研究[J]. 应用地球物理, 2016, 13(4): 683-688.
[10] 常江浩,于景邨,刘志新. 煤矿老空水全空间瞬变电磁响应三维数值模拟及应用[J]. 应用地球物理, 2016, 13(3): 539-552.
[11] 张钱江,戴世坤,陈龙伟,强建科,李昆,赵东东. 基于网格加密-收缩的2.5D直流电法有限元模拟[J]. 应用地球物理, 2016, 13(2): 257-266.
[12] 胡英才, 李桐林, 范翠松, 王大勇, 李建平. 基于矢量有限元法的三维张量CSAMT正演模拟[J]. 应用地球物理, 2015, 12(1): 35-46.
[13] 刘洋, 李向阳, 陈双全. 高精度双吸收边界条件在地震波场模拟中的应用[J]. 应用地球物理, 2015, 12(1): 111-119.
[14] Cho, Kwang-Hyun. 爆炸与天然地震的区别[J]. 应用地球物理, 2014, 11(4): 429-436.
[15] 何怡原, 张保平, 段玉婷, 薛承瑾, 闫鑫, 何川, 胡天跃. 水力压裂产生的地表和地下变形场数值模拟[J]. 应用地球物理, 2014, 11(1): 63-72.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司