3D laterolog array sonde design and response simulation
Yin Cheng-Fang1,2, Ke Shi-Zhen1,2, Xu Wei1,2, Jiang Ming1,2, Zhang Lei-Jie1,2, and Tao Jie1,2
1. College of Geophysics and Information Engineering, China University of Petroleum, Beijing 102249, China.
2. Key Laboratory of Earth Prospecting and Information Technology, Beijing 102249, China.
Abstract:
A new three-dimensional laterolog array sonde (3D-LS) is presented. The 3D-LS is based on existing high-resolution laterolog array and azimuthal resistivity imaging sondes with radial, longitudinal, and circumferential detection abilities. Six investigation modes are designed using the 3D finite-element method and different investigation depths are simulated based on the pseudo-geometrical factor of the six modes. The invasion profile is described using multi-array radial logs. From the analysis of the pseudo-geometrical factor, the investigation depth of the 3D-LS is about 1.5 m for conductive invasion, which is close to that of the dual laterolog tool but greater than that of the highly integrated azimuthal laterolog sonde. The vertical and azimuthal resolution is also analyzed with the same method. The 3D-LS can detect low-resistivity anomalies of 0.5 m thickness and 15? around the borehole for infinitely thick formations. This study lays the foundation for more work on 3D laterolog array sonde for evaluating low-resistivity anomalies.
YIN Cheng-Fang,KE Shi-Zhen,XU Wei et al. 3D laterolog array sonde design and response simulation[J]. APPLIED GEOPHYSICS, 2014, 11(2): 223-234.
[1]
Coggon, J. H., 1971, Electromagnetic and electrical modeling by the finite element method: Geophysics, 36(1), 132-155.
[2]
Davies, D. H., Ollivier, F., Gounot, M. T., Seeman, B., Trouiller, J. C., Dominique, B., Ferreira, A., Pittman, D. J., Mahaly Randrianavony, Smits, J. W., Anderson, B. I., and Lovell, J., 1994, Azimuthal resistivity imaging: anew-generation laterolog: SPE Formation Evaluation, 165-174.
[3]
Fan, Y. R., Jiang, J. L., Deng, S. G., and Chen, H., 2009, Numerical simulation of high resolution array lateral logging responses: Well Logging Technology, 33(4), 333-336.
[4]
Feng, L. W., Tang, T. Z., He, F., Xu, Y., Sun, J. J., and He, X. Z., 2013, On the response characteristics of high resolution Dual Laterolog and common Dual Laterolog: Well Logging Technology, 37(5), 481-486.
[5]
He, F., Ma, X., Feng, L. W., Li, Q., Cao, J. Z, and Liu, W., 2013, HAL6505 array laterolog tool: Oil Furum, (2), 59-62.
[6]
Huang, J. Z., Zhu, J., Li, M. X., and Wang, Z., 2001, A new azimuthal resistivity imaging tool: China Patent, CN00226552.4.
[7]
Itskovich, G. B., Mezzatesta, A. G., Strack, K. M., and Tabarovsky, L. A., 1998, High-definition Lateral Log-resisitivity device: basic physics and resolution: SPWLA 39th Annual Logging Symposium, 1-12.
[8]
Li, D. Q., 1984, The application of finite-element method in electric well logging: Petroleum Industry Press, Beijing.
[9]
Li, Z. Q., Yang, Z. Q, Wang, J. J, Yang, C., Yang, Y. J., Ju, C., Huang, Y., Zheng, J. X., Zhao, L. X., and Ji, X. F., 2012, A high resolution azimuthal resistivity laterolog tool and logging method: China Patent, CN201210233337.8.
[10]
Li, Z. Q., Yang, Z. Q, Wang, J. J, Yang, C., Yang, Y. J., Ju, C., Huang, Y., Zheng, J. X., Zhao, L. X., and Ji, X. F., 2013, High-resolution azimuthal resistivity laterolog tool: China Patent, CN201220326167.3.
[11]
Liu, D. J., Ma, Z. H., Xing, X. N., Li, H., and Guo, Z. Y., 2013, Numerical simulation of LWD resistivity response of carbonate formation using self-adaptive hp-FEM: Applied Geophysics, 10(1), 97-108.
[12]
Schlumberger, 2013, Log Interpretation charts.
[13]
Scholberg, A. 1973, Apparatus for determing the resistivity of a subsurface earth formation at different lateral distances from a borehole wall: US Patent, 3772589.
[14]
Sheng, J. G., 1984, Numerical analysis for electromagnetic fields: Science Press, Beijing.
[15]
Smits, J. W., Benimelli, D., Dubourg, I., Faivre, O., Hoyle, D., Tourillon, V., Trouiller, J-C., and Anderson, B. I., 1995, High resolution from a new laterolog with azimuthal imaging: 70th SPE Annual Technical Conference and Exhibition, SPE 30584, 563-575.
[16]
Smits, J. W., Dubourg, I., Lüling, M. G., Minerbo, G. N., Koelman, J. M. V. A., Hoffman, L. J. B., Lomas, A. T., Oosten, R. K. v. d., Schiet, M. J., and Dennis, R. N., 1998, Improved resistivity interpretation utilizing a new array laterolog tool and associated inversion processing: 73th SPE Annual Technical Conference and Exhibition, SPE 49328, 831-844.
[17]
Suau, J., Grimaldi, P., Poupon, A., and Souhaite, P., 1972, The dual laterolog-Rxo Tool: Fall Meeting of the Society of Petroleum Engineers of AIME, SPE 4018, 1-44.
[18]
Wang, X., Chen, H., and Wang, X. M., 2012, Dual laterolog borehole correction based on dynamic tool constants: Applied Geophysics, 9(4), 414-420.
[19]
Wu, J., Xie, W. W., Xie, X. C., Zhang, J., and Xu, X. Q., 2008, Forward response analysis of array lateral logging tool: Journal of Xi’an Shiyou University (Natural Science Edition), 23(1), 73-80.
[20]
Yang, W., 2002, ARI log responses to 3D anisotropic formations: Well Logging Technology, 26(1), 30-34.
[21]
Yang, W., and Tao, G., 1999, Forward and inversion of azimuthal lateral resistivity logs: 69th SEG Annual Meeting, expanded abstract, 1-4.
[22]
Yan, Z. W., 2006, ANSYS10.0 engineering electroma-gnetic analysis technology and example explanation: China Water Power Press, Beijing.
[23]
Zeng, Y. G., Xu, G. H., and Song, G. X., 1982, Electromagnetic field finite element method: Science Press, Beijing.
[24]
Zhang, G. J., 1986, Electrical logging: Petroleum Industry Press, Beijing.
[25]
Zhu, J., and Feng, L. W., 2007, Analysis on numeric simulation of high-resolution dual laterolog (DLL) response: Oil Geophysical Prospecting, 42(4), 457-462.
[26]
Zhu, J., Feng, L. W., Li, J. H., Zhao, Y. Z., and Wang, J. N., 2007, A new high resolution dual laterolog logging method: Well Logging Technology, 31(2), 118-123.