APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (2): 179-185    DOI: 10.1007/s11770-014-0420-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
一种基于特征值相干结果直方图均衡化的裂缝增强方法
窦喜英1,韩立国1,王恩利2,董雪华2,杨庆2,鄢高韩2
1. 吉林大学地球探测科学与技术学院,长春 130026
2. 中石油勘探开发研究院西北分院,兰州 730020
A fracture enhancement method based on the histogram equalization of eigenstructure-based coherence
Dou Xi-Ying1, Han Li-Guo1, Wang En-Li2, Dong Xue-Hua2, Yang Qing2, and Yan Gao-Han2
1. College of Geo-Exploration of  Science and Technology, Jilin University, Changchun 130026, China.
2. Research Institute Petroleum Exploration & Development-Northwest (NWGI), Lanzhou 730020, China.
 全文: PDF (804 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 特征值相干属性是一种高效、成熟的裂缝预测技术。但即使在连续、稳定的目的层段,部分裂缝隐没于相近高灰度值区域而难以识别;在破碎带发育区域,由于成像能量难以完美聚焦,中、小尺度的裂缝区域呈现相近低灰度值的云雾状模糊而无法区分。本文提出一种以直方图均衡化处理为核心技术的新型裂缝增强方法。该方法能够强化相干图像中不连续性信息与背景的差异性,突出裂缝的线性结构;采用相干图像阈值逐级调节的方式,实现对不同尺度裂缝的预测。该方法同时提升了显性、隐性裂缝识别能力和精度。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
窦喜英
韩立国
王恩利
董雪华
杨庆
鄢高韩
关键词断层裂缝   直方图均衡化   相干   增强     
Abstract: Eigenstructure-based coherence attributes are efficient and mature techniques for large-scale fracture detection. However, in horizontally bedded and continuous strata, buried fractures in high grayscale value zones are difficult to detect. Furthermore, middle- and small-scale fractures in fractured zones where migration image energies are usually not concentrated perfectly are also hard to detect because of the fuzzy, clouded shadows owing to low grayscale values. A new fracture enhancement method combined with histogram equalization is proposed to solve these problems. With this method, the contrast between discontinuities and background in coherence images is increased, linear structures are highlighted by stepwise adjustment of the threshold of the coherence image, and fractures are detected at different scales. Application of the method shows that it can also improve fracture cognition and accuracy.
Key wordsFault   fracture   histogram equalization   coherence   enhancement   
收稿日期: 2013-11-14;
基金资助:

本研究项目由国家科技重大专项子课题 (编号:2011ZX05025-001-04) 资助。

引用本文:   
窦喜英,韩立国,王恩利等. 一种基于特征值相干结果直方图均衡化的裂缝增强方法[J]. 应用地球物理, 2014, 11(2): 179-185.
DOU Xi-Ying,HAN Li-Guo,WANG 恩Li et al. A fracture enhancement method based on the histogram equalization of eigenstructure-based coherence[J]. APPLIED GEOPHYSICS, 2014, 11(2): 179-185.
 
[1] Acharya, T., and Ray, A. K., Image Processing: Principles and Applications: Wiley-Interscience, 2005.
[2] Bahorich, M., and Farmer, S. L., 1995, 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube: The Leading Edge, 14, 1053 - 1058.
[3] Caselles, V., Lisani, J. L., Morel, J. M., and Sapiro, G., 1999, Shape preserving local histogram modification: IEEE Transactions on Image Processing, 8(2), 220 - 230.
[4] Chopra, S., and Marfurt, K. J., 2007, Seismic Attributes for Fault/Fracture Characterization, SEG Technical Program Expanded Abstracts 2007, 1520 - 1524.
[5] Chorpa, S., and Marfurt, K. J., 2007, Seismic attributes for prospect identification and reservoir characterization: Society of Exploration Geophysiscists, Tulsa, OK.
[6] Chopra, S., and Marfurt, K. J., 2010, Integration of coherence and volumetric curvature images: The Leading Eage, 29, 1092-1107.
[7] Cohen, I., and Coifman, R., 2002, Local discontinuity measures for 3D seismic data, Geophysics, 67(6), 1933 - 1945.
[8] Gersztenkorn, A., and Marfurt, K. J., 1999, Eigenstructure based coherence computations as an aid to 3-D structural and stratigraphic mapping: Geophysics, 64, 1468 - 1479.
[9] Gonzalez, R. C., and Woods, R. E., 2007, Digital Image Processing (Third Edition): Pearson Prentice Hall, New York.
[10] Khellaf, A., Beghdadi, A., and Dupoiset, H., 1991, Entropic contrast enhancement: IEEE Transactions on Medical Imaging, 10(4), 589 - 592.
[11] Kim, Y. L., 1997, Contrast enhancement using brightness preserving bihistogram equalization: IEEE Transactions on Consumer Electronics, 43(1), 1 - 8.
[12] Marfurt, K.J., Kirlin, R. L., Farmer, S. H., and Bahorich, M. S., 1998, 3D seismic attributes using a running window semblance-based algorithm: Geophysics, 63(4), 1150 - 1165.
[13] Marfurt, K. -J., Sudhaker, V., Gersztenkorn, A., Crawford, K. D., and Nissen, S. E., 1999, Coherency calculations in the presence of structural dip: Geophysics, 64(1), 104 - 111.
[14] Sheet, D., Garud, H., Suyeer, A., et al., 2010, Brightness preserving dynamic fuzzy histogram equalization: IEEE Transactions Consumer Electronics, 56(4) , 2475 - 2480.
[15] Wang, C., and Ye, Z., Brightness preserving histogram equalization with maximum entropy: A variational perspective: IEEE Transactions Consumer Electronics, 2005, 51(4), 1326 - 1334.
[16] Wang, X. K., Gao, J. H., Chen, W. C., and Song, Y. Z., 2012, An efficient implementation of eigenstructure-based coherence algorithm using recursion strategies and the power method, Journal of Applied Geophysics, 82, 11 - 18.
[17] Wu, C. M., 2013, Studies on Mathematical Model of Histogram Equalization: Acta Electronic Sinica, 41(3), 599 - 602.
[18] Yang, P. J., Mu, X., and Zhang, J. T., 2010, Orientational edge-preserving fault enhancement: Chinese J. Geophys. (in Chinese), 53(12), 2992 - 2997.
[19] Zhang, E. H., Wang W., Gao J. H., et al. 2010, Nonlinear anisotropic diffusion filtering for 3D seismic noise removal and structure enhancement: Progress in Geophys. (in Chinese), 25(3), 866 - 870.
[20] Zeng, F. S., Wang, X. C., and Chen, T. J., 2013, Joint technique of spectral decomposition and C3 coherence to detect fine faults of coal bed: Progress in Geophys. (in Chinese), 28(1), 462 - 467.
[21] Zhang, J. H., Wang Y. Y., Zhao Y., and Huang G. P., 2004, Detection of coherent data volume by wavelet multi resolution and application, Oil Geophysical Prospecting, 39(1), 33 - 38.
[1] 王玲玲,魏建新,黄平,狄帮让,张福宏. 多尺度裂缝储层地震预测方法研究[J]. 应用地球物理, 2018, 15(2): 240-252.
[2] 杨涛,高静怀,张兵,王大兴. 基于Kendall一致性度量的地震数据相干估计算法[J]. 应用地球物理, 2016, 13(3): 529-538.
[3] 隋京坤, 郑晓东, 李艳东. 一种基于振幅谱的地震相干属性计算方法[J]. 应用地球物理, 2015, 12(3): 353-361.
[4] 蒋甫玉, 高丽坤. 基于改进的小子域滤波的重力异常及重力梯度张量边缘增强[J]. 应用地球物理, 2012, 9(2): 119-130.
[5] 蔡涵鹏, 贺振华, 黄德济. 基于混合时频分析技术的地震数据噪声压制[J]. 应用地球物理, 2011, 8(4): 319-327.
[6] 王季, 陆文凯. 基于局部直方图规定化的相干体增强[J]. 应用地球物理, 2010, 7(3): 249-256.
[7] 王保利, 朱光明, 高静怀. Walkaway VSP数据的联合相干成像[J]. 应用地球物理, 2010, 7(1): 41-48.
[8] 王保利, 朱光明, 高静怀. Walkaway VSP数据的联合相干成像[J]. 应用地球物理, 2010, 6(1): 41-48.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司