APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (4): 442-452    DOI: 10.1007/s11770-013-0393-1
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于Cauchy先验分布的AVO弹性参数弱非线性波形反演
麻纪强,耿建华
同济大学海洋地质国家重点实验室,上海 200092
Cauchy prior distribution-based AVO elastic parameter estimation via weakly nonlinear waveform inversion
Ma Ji-Qiang1 and Geng Jian-Hua1
1. Key State Laboratory of Marine Geology, Tongji University, Shanghai 200092, China.
 全文: PDF (1129 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 基于Cauchy先验分布的贝叶斯AVO反射率反演,可以产生类似于稀疏脉冲反演的结果,增强了对大反射系数的识别能力,反演过程中正则项和参数矩阵的计算都需要用到由上一步迭代所估计出的模型参数信息,因而反问题呈现非线性,此外该过程依赖于模型参数之间的线性统计关系,而且反演结果为反射率而非弹性参数,若利用积分法获取弹性参数会产生积分积累误差,不利于储层预测和流体检测。贝叶斯AVO波形反演通过将反射率改写为弹性参数差分形式,直接从叠前地震数据中提取弹性参数。本文综合考虑上述两种方法的优点,在研究过程中仍然采用Cauchy先验分布,同时对贝叶斯AVO反射率的反演过程进行了修改,同时考虑了模型参数的时变协方差,实现了基于Cauchy先验分布的AVO弹性参数弱非线性波形反演。本方法的提出有效避免了模型参数之间的线性统计关系假设,同时也能够从地震数据中直接反演得到纵、横波速度和密度。理论合成数据实验证明,此方法可以在含有噪音的情况下也能得到比较准确的反演结果。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
麻纪强
耿建华
关键词Cauchy先验分布   AVO弹性参数反演   弱非线性   波形反演     
Abstract: Cauchy priori distribution-based Bayesian AVO reflectivity inversion may lead to sparse estimates that are sensitive to large reflectivities. For the inversion, the computation of the covariance matrix and regularized terms requires prior estimation of model parameters, which makes the iterative inversion weakly nonlinear. At the same time, the relations among the model parameters are assumed linear. Furthermore, the reflectivities, the results of the inversion, or the elastic parameters with cumulative error recovered by integrating reflectivities are not well suited for detecting hydrocarbons and fluids. In contrast, in Bayesian linear AVO inversion, the elastic parameters can be directly extracted from prestack seismic data without linear assumptions for the model parameters. Considering the advantages of the abovementioned methods, the Bayesian AVO reflectivity inversion process is modified and Cauchy distribution is explored as a prior probability distribution and the time-variant covariance is also considered. Finally, we propose a new method for the weakly nonlinear AVO waveform inversion. Furthermore, the linear assumptions are abandoned and elastic parameters, such as P-wave velocity, S-wave velocity, and density, can be directly recovered from seismic data especially for interfaces with large reflectivities. Numerical analysis demonstrates that all the elastic parameters can be estimated from prestack seismic data even when the signal-to-noise ratio of the seismic data is low.
Key wordsCauchy priori distribution   AVO   elastic parameters inversion   weakly nonlinear   waveform inversion   
收稿日期: 2012-07-06;
基金资助:

本研究由中国高技术研究与开发计划(863计划(项目编号:2008AA093001)资助。

引用本文:   
麻纪强,耿建华. 基于Cauchy先验分布的AVO弹性参数弱非线性波形反演[J]. 应用地球物理, 2013, 10(4): 442-452.
MA Ji-Qiang,GENG Jian-Hua. Cauchy prior distribution-based AVO elastic parameter estimation via weakly nonlinear waveform inversion[J]. APPLIED GEOPHYSICS, 2013, 10(4): 442-452.
 
[1] Aki, K., and Richards, P. G., 1980, Quantitative seismology: theory and methods: W. H. Freeman and Co.
[2] Buland, A., and Omre, H., 2003, Bayesian linearized AVO inversion: Geophysics, 68, 185 - 198.
[3] Castagna, J. P., Batzle, M. L., and Eastwood, R. L., 1985, Relationships between compressional- wave and shear wave velocities in clastic silicate rocks: Geophysics, 50, 571 - 581.
[4] Chen, J. J., and Yin, X. Y., 2007, Three-parameter AVO waveform inversion based on Bayesian theorem: Chinese J. Geophys., 50(4), 1251 - 1260.
[5] Downton, J., and Chaveste, A, 2004, Calibrated three-term AVO to estimate density and water saturation: 2004 CSEG Convention Expanded Abstracts.
[6] Downton, J. E., 2005, Seismic parameter estimation from AVO inversion: PhD Thesis, University of Calgary.
[7] Gardner, G. H. F., Gardner, L.W., and Gregory, A. R., 1974, Formation velocity and density-The diagnostic basics for stratigraphic traps: Geophysics, 39, 770 - 780.
[8] Ma, J. Q., Fu, G. P., and Geng, J. H., 2013, Full Zoeppritz equation-based elastic parameters Bayeisan generalized linear inversion. 75th EAGE Conference & Exhibition, London. DOI: 10.3997/2214-4609.20130469.
[9] Nocedal, J., and Wright, S. J., 1999, Numerical Optimization: Springer-Verlag, New York, American.
[10] Sacchi, M. D., and Ulrych, T. D., 1995, High-resolution velocity gathers and offset space reconstruction: Geophysics, 60, 1169 - 1177.
[11] Tarantola, A., 1987, Inverse problem theory, methods for data fitting and model parameter estimation: Elsevier Science Publishers, Amsterdam, Netherland.
[12] Zhang, S. X., Yin, X. Y., and Zhang, F. C., 2011, Three-parameters pre-stack inversion based on Trivariate Cauchy probability distribution. Oil Geophysical Prospecting, 46(5), 737 - 743.
[1] 王恩江,刘洋,季玉新,陈天胜,刘韬. 粘滞声波方程Q值波形反演方法研究*[J]. 应用地球物理, 2019, 16(1): 83-98.
[2] 李振春,蔺玉曌,张凯,李媛媛,于振南. 时间域波场重构反演[J]. 应用地球物理, 2017, 14(4): 523-528.
[3] 崔超,黄建平,李振春,廖文远,关哲. 一种基于拟相位信息目标泛函的反射波波形反演方法[J]. 应用地球物理, 2017, 14(3): 407-418.
[4] 曲英铭,李振春,黄建平,李金丽. 棱柱波形与全波形联合反演方法[J]. 应用地球物理, 2016, 13(3): 511-518.
[5] 张钱江, 戴世坤, 陈龙伟, 李昆, 赵东东, 黄兴兴. 起伏地形条件下二维声波频率域全波形反演[J]. 应用地球物理, 2015, 12(3): 378-388.
[6] 王义, 董良国, 刘玉柱. 一种改进的全波形反演混合迭代优化方法[J]. 应用地球物理, 2013, 10(3): 265-277.
[7] 韩淼, 韩立国, 刘春成, 陈宝书. 基于混叠震源和频率组编码的频率域自适应全波形反演[J]. 应用地球物理, 2013, 10(1): 41-52.
[8] 宋建勇, 郑晓东, 秦臻, 苏本玉. 基于多网格的频率域全波形反演[J]. 应用地球物理, 2011, 8(4): 303-310.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司