APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (4): 411-422    DOI: 10.1007/s11770-013-0399-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
多孔颗粒上界限模型及其在塔里木碳酸盐岩中的应用
郭玉倩1, 2,马宏达3,石开波1,曹宏2,黄录忠1,姚逢昌1, 2,胡天跃1, 2
1. 北京大学地球与空间科学学院,北京 100871
2. 中国石油勘探开发研究院,北京,100083
3. WesternGeco, Schlumberger, Houston 77042, USA
Porous-grain–upper-boundary model and its application to Tarim Basin carbonates
Guo Yu-Qian1,2, Ma Hong-Da3, Shi Kai-Bo1, Cao Hong2, Huang Lu-Zhong1, Yao Feng-Chang1,2, and Hu Tian-Yue1,2
1. School of Earth and Space Sciences, Peking University, Beijing 100871, China.
2. Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China.
3. WesternGeco, Schlumberger, Houston 77042, USA.
 全文: PDF (1148 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 塔里木盆地碳酸盐岩属于低孔隙度低渗透率,且孔隙形状复杂,常规岩石物理模型不能很好的描述塔里木地区碳酸盐岩孔隙度-速度关系。本文提出一种新的岩石物理模型-多孔颗粒上界限(PGU)模型来估计低孔隙度下碳酸盐岩的速度-孔隙度关系。在这个模型中,将岩石视为压实的弹性多孔斑块介质,从沉积过程角度把岩石中孔隙类型分为孤立孔隙和连通孔隙。这个模型是多孔颗粒硬砂岩(PGST)模型的改进,将临界孔隙度修改为更接近于实际的连通孔隙度。首先采用差分等效介质模型(DEM)来计算含孤立孔隙的岩石沉积晶体等效模量,利用改进的Hashin-Shtrikman上界限来估算含有连通孔隙的干岩模量。本文将该模型在塔里木地区测井数据应用,模型预测与测井数据匹配很好。与其他几种常用的速度-孔隙度模型对比,结果显示PGU模型预测结果更稳定,误差更小。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭玉倩
马宏达
石开波
曹宏
黄录忠
姚逢昌
胡天跃
关键词碳酸盐岩   多孔颗粒上界限(PGU)模型   孔隙度   速度     
Abstract: Most of the carbonates in the Tarim Basin in northwest China are low-porosity and low-permeability rocks. Owing to the complexity of porosity in carbonates, conventional rock-physics models do not describe the relation between velocity and porosity for the Tarim Basin carbonates well. We propose the porous-grain–upper-boundary (PGU) model for estimating the relation between velocity and porosity for low-porosity carbonates. In this model, the carbonate sediments are treated as packed media of porous elastic grains, and the carbonate pores are divided into isolated and connected pores The PGU model is modified from the porous-grain–stiff-sand (PGST) model by replacing the critical porosity with the more practical isolated porosity. In the implementation, the effective elastic constants of the porous grains are calculated by using the differential effective medium (DEM) model. Then, the elastic constants of connected porous grains in dry rocks are calculated by using the modified upper Hashin–Shtrikman bound. The application to the Tarim carbonates shows that relative to other conventional effective medium models the PGU model matches the well log data well.
Key wordsPorous-grain–upper-boundary (PGU) model   Carbonates   Porosity   Velocity   
收稿日期: 2013-05-09;
基金资助:

本研究由国家重点基础研究发展计划(编号:2013CB228602)、国家高技术研究发展计划(2013AA064202)和国家科技重大专项(编号:2011ZX05004-003)资助。

引用本文:   
郭玉倩,马宏达,石开波等. 多孔颗粒上界限模型及其在塔里木碳酸盐岩中的应用[J]. 应用地球物理, 2013, 10(4): 411-422.
GUO Yu-Qian,MA Hong-Da,SHI Kai-Bo et al. Porous-grain–upper-boundary model and its application to Tarim Basin carbonates[J]. APPLIED GEOPHYSICS, 2013, 10(4): 411-422.
 
[1] Avseth, P., Mukerji, T., and Mavko, G., 2005, Quantitative seismic interpretation: applying rock physics tools to reduce interpretation risk: Cambridge University Press.
[2] Avseth, P., and Jorstad, A., Wijngaarden, A., Mavko, G., 2009, Rock physics estimation of cement volume, sorting, and net-to gross in North Sea sandstones, The Leading Edge, 28(1), 98 - 108.
[3] Ba, J., Carcione, M., and Nie, J. X., 2011, Biot-Rayleigh theory of wave propagation in double-porosity media, Journal of Geophysical Research, 116, B06202.
[4] Baechle, G. T., Colpaert, A., Eberli, G. P., and Weger, R. J., 2008, Effects of micro porosity on sonic velocity in carbonate rocks, The Leading Edge, 27(8), 1012 - 1018.
[5] Berryman, J. G., 1980, Elastic wave propagation in fluid-saturation porous media. Acoust. Soc. Am., 68, 1809 - 1831.
[6] Berryman, J. G., 1991, Exact results for generalized Gassmann’s equation in composite porous media with two constituents: Geophysics, 56, 1950 - 1960.
[7] Biot, M. A., 1956, Theory of propagation of elastic waves in a fluid-saturated porous solid, I. Low frequency range, II. Higher frequency range: J. Acoust. Soc. Amer., 28, 168 - 191.
[8] Chen, S. Q., Wang, S. X., and Zhang, Y. G., 2009, Reservoir prediction using pre-stack inverted elastic parameters. Applied Geophysics, 26(4), 349 - 358.
[9] Cleary, M. P., Chen, I. W., and Lee, S. M., 1980, Self-consistent techniques for heterogeneous media: Journal of the Engineering Mechanics Division-ASCE, 106, 861 - 887.
[10] Dvorkin, J., and Nur, A., 1996, Elasticity of high-porosity sandstone: Theory for two North Sea data sets: Geophysics, 61, 1363 - 1370.
[11] Dvorkin, J., and Prasad, M., 1999, Elasticity of marine sediments: Rock Physics modeling: Geophysical Research Letters, 26, 1781 - 1784.
[12] Dvorkin, J., Derzhi, N., Diaz, E., and Fang, Q., 2011, Relevance of computational rock physics: Geophysics, 76(5), E141 - E153.
[13] Gal, G., Dvorkin, J., and Nur, A., 1998, A physical model for porosity reduction in sandstone: Geophysics, 63, 454 - 459.
[14] Gassmann, F., 1951, Elastic waves through a packing of spheres: Geophysics, 16, 673 - 685.
[15] Guo, Y. Q., Ma, H. D., Hu, T. Y., Cao, H., and Yao, F. C., 2013, Porous grain model for carbonate reservoir and its application: the 75th EAGE Annual Meeting, Expand Abstract, P1507, London, UK
[16] Hashin, Z., and Shtrikman, S., 1963, A variational approach to the elastic behavior of multiphase materials: Journal of Mechanics and Physics of Solids, 11(2), 127 - 140
[17] Kumer, M., and Han, D., 2005, Pore shape effect on elastic properties of carbonate rocks: the 74th SEG Annual meeting Expanded Abstracts, 1477 - 1480.
[18] Lin, C. R., Wang, S. X., and Zhang, Y., 2006, Predicting the distribution of reservoirs by applying the method of seismic data structure characteristics: Example from the eighth zone in Tahe Oilfield. Applied Geophysics, 3(4), 234 - 242.
[19] Mavko, G., Mukerji, T., and Dvorkin, J., 1998, The rock physics handbook: Tools for seismic analysis of porous media (1st ed.): Cambridge University Press.
[20] Mindlin, R. D., 1949, Compliance of elastic bodies in contact: Appl. Mech., 16, 259 - 268;
[21] Murphy, W. F., Ⅲ. 1982, Effects of microstructure and pore fluids on the acoustic properties of granular sedimentary materials: PhD Dissertation, Stanford University.
[22] Norris, A. N., 1985, A differential scheme for the effective moduli composites: Mechanics of Materials, 4, 1 - 16.
[23] Nur, A., and Simmons, G., 1969, Stress-induced velocity anisotropy in rocks: An experimental Study. Geophys Res, 74, 6667.
[24] Ruiz, F., and Dvorkin, J., 2009, Sediment with porous grains: Rock-physics model and application to marine carbonate and opal: Geophysics, 74(1), E1 - E15.
[25] Ruiz, F., and Cheng, A., 2010, A rock physics model for tight gas sand: The Leading Edge, 29(12), 1484 - 1489.
[26] Sayers, C. M., 2008, The elastic properties of carbonates, The Leading Edge, 27(8), 1020 - 1024.
[27] Sun, S. Z., Jia, C., and Zhou, X., 2011, Carbonate research in China-technologies Meeting tough Challenges, the 73th EAGE Annual Meeting Expand Abstract, P0004, Vienna, Austria.
[28] Tillotson, P., Chapman, M., Best, A. I., Sothcott, J., McCann, C., Wang, S. X., and Li, X. Y., 2011, Observations of fluid-dependent shear-wave splitting in synthetic porous rocks with aligned penny-shaped fractures. Geophysical Prospecting, 59(1), 111 - 119.
[29] Wang, S. X., Li, X. Y., and Di, B. R., 2010, Reservoir fluid substitution effects on seismic profile interpretation: A physical modeling experiment. Geophysical Research Letters, 37(10), L10306.
[30] Xu, S., and White, R., 1995, A new velocity model for clay-sand mixtures, Geophysical Prospecting, 43, 91 - 118.
[31] Xu, S., and White, R., 1996, A physics model for shear-wave velocity prediction, Geophysical Prospecting, 44, 687 - 717.
[32] Xu, S., and Payne, A., 2009, Modeling elastic properties in carbonate rocks, The Leading Edge, 28(1), 66 - 74.
[33] Yao, Y., Sa, L. M., and Wang, S. X., 2005, Research on the seismic wave field of karst cavern reservoirs near deep carbonate weathered crusts. Applied Geophysics, 2(2), 94 - 102.
[1] 李诺, 陈浩, 张秀梅, 韩建强, 王健, 王秀明. 岩石基质模量与临界孔隙度的联合预测方法*[J]. 应用地球物理, 2019, 16(1): 15-26.
[2] 檀文慧,巴晶,郭梦秋,李辉,张琳,于庭,陈浩. 致密油粉砂岩脆性特征实验分析研究[J]. 应用地球物理, 2018, 15(2): 175-187.
[3] 段茜,刘向君. 气水两相裂缝型介质孔隙流体微观分布模式及其声学响应特性[J]. 应用地球物理, 2018, 15(2): 311-317.
[4] 郭桂红,闫建萍,张智,José Badal,程建武,石双虎,马亚维. 流体饱和孔隙定向裂缝储层中地震波衰减的模拟分析[J]. 应用地球物理, 2018, 15(2): 311-317.
[5] 孙成禹,王妍妍,伍敦仕,秦效军. 基于洗牌蛙跳算法的瑞雷波非线性反演[J]. 应用地球物理, 2017, 14(4): 551-558.
[6] 李琳,马劲风,王浩璠,谭明友,崔世凌,张云银,曲志鹏. 胜利油田高89区块CO2驱油与地质封存过程中横波速度预测方法研究[J]. 应用地球物理, 2017, 14(3): 372-380.
[7] 宋连腾,刘忠华,周灿灿,俞军,修立军,孙中春,张海涛. 致密砂岩弹性各向异性特征及影响因素分析[J]. 应用地球物理, 2017, 14(1): 10-20.
[8] 刘杰,刘江平,程飞,王京,刘肖肖 . 祁连山冻土区水合物地层岩石物理模型的构建[J]. 应用地球物理, 2017, 14(1): 31-39.
[9] 郭同翠,王红军,穆龙新,张兴阳,马智,田雨,李昊宸. 盐膏岩组分与岩石速度关系模版研究——以阿姆河盆地盐膏岩为例[J]. 应用地球物理, 2016, 13(3): 459-468.
[10] 张军华,李军,肖文,谭明友,张云银,崔世凌,曲志鹏. 基于速度频散因子表征的CO2驱地震监测方法[J]. 应用地球物理, 2016, 13(2): 307-314.
[11] 朱伟,单蕊. 三维数字岩心透射超声波模拟与速度精度分析[J]. 应用地球物理, 2016, 13(2): 375-381.
[12] 李生杰, 邵雨, 陈旭强. 碳酸盐岩储层各向异性岩石物理建模与孔隙结构分析[J]. 应用地球物理, 2016, 13(1): 166-178.
[13] 陈海峰, 李向阳, 钱忠平, 宋建军, 赵桂玲. 基于两参数简化方程的叠前偏移速度分析[J]. 应用地球物理, 2016, 13(1): 135-144.
[14] 潘建国, 王宏斌, 李闯, 赵建国. 孔隙结构对致密碳酸盐岩地震岩石物理特征的影响分析[J]. 应用地球物理, 2015, 12(1): 1-10.
[15] 刘少勇, 王华忠, 刘太臣, 胡英, 张才. 基于旅行时梯度场的Kirchhoff PSDM角道集生成方法研究[J]. 应用地球物理, 2015, 12(1): 64-72.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司