APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (3): 349-356    DOI: 10.1007/s11770-013-0387-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
点电荷微元与偶极子源的时域电磁场响应对比
周楠楠1,薛国强1,王贺元2
1. 中国科学院矿产资源研究重点实验室,中国科学院地质与地球物理研究所,北京 100029
2. 辽宁工业大学理学院,锦州 121001
Comparison of the time-domain electromagnetic field from an infinitesimal point charge and dipole source
Zhou Nan-Nan1,2, Xue Guo-Giang1, and Wang He-Yuan2
1. Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Science, Beijing 100029, China.
2. College of science, Liaoning University of Technology, Jinzhou 121001, China.
 全文: PDF (602 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 电偶极子依靠两个等量异号电荷的加速运动实现电磁场辐射,同样地,时变点电荷微元可以依靠单个电荷的加速运动产生电磁场。基于这种电磁场理论实质,本文开展了点电荷微元与偶极子源的时域电磁场响应对比研究。首先,给出三维导电空间点源的时间域位函数;然后,利用辅助位函数与电场、磁场响应之间的关系,给出均匀无耗全空间的点电荷载流微元时间域电场、磁场的表达式。并从阶跃关断时刻、近源区场、远源区场等方面对比分析全空间中两种源的异同。研究结果表明:在近源区,两种源产生的场差别较大;在远源区,两种源产生的场几乎相同。通过实际观测的数据和使用电偶极子源公式对简化模型计算结果的对比,认为点电荷微元场的空间分布更符合实际场源产生的电场、磁场分布特征。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
周楠楠
薛国强
王贺元
关键词点电荷微元   偶极子源   时间域   电磁响应   近源区   比较     
Abstract: An electromagnetic field is generated through the accelerating movement of two equal but opposite charges of a single dipole. An electromagnetic field can also be generated by a time-varying infinitesimal point charge. In this study, a comparison between the electromagnetic fields of an infinitesimal point charge and a dipole has been presented. First, the time-domain potential function of a point source in a 3D conductive medium is derived. Then the electric and magnetic fields in a 3D homogeneous lossless space are derived via the relation between the potential and field. The field differences between the infinitesimal point charge and the dipole in the step-off time, far-source, and near-source zones are analyzed, and the accuracy of the solutions from these sources is investigated. It is also shown that the field of the infinitesimal point charge in the near-source zone is different from that of the dipole, whereas the far-source zone fields of these two sources are identical. The comparison of real and simulated data shows that the infinitesimal point charge represents the real source better than the dipole source.
Key wordsInfinitesimal point charge   dipole source   time-domain   electromagnetic response   near-source zone   
收稿日期: 2012-03-25;
基金资助:

本研究由国家重点基础研究发展973计划(2012CB416605)和国家自然科学基金项目(41174090),以及国家重大科研装备研制项目(ZDYZ2012-1-05-04)的资助。

作者简介: 周楠楠,中国科学院地质与地球物理研究所在读博士,主要研究方向为大尺度源瞬变电磁理论与应用,2008年本科毕业于中国海洋大学。
引用本文:   
周楠楠,薛国强,王贺元. 点电荷微元与偶极子源的时域电磁场响应对比[J]. 应用地球物理, 2013, 10(3): 349-356.
ZHOU Nan-Nan,XUE Guo-Qiang,WANG He-Yuan. Comparison of the time-domain electromagnetic field from an infinitesimal point charge and dipole source[J]. APPLIED GEOPHYSICS, 2013, 10(3): 349-356.
 
[1] Frischknecht, F. C., 1967, Fields about an oscillating magnetic dipole over a two-layer earth, and application to ground and airborne electromagnetic surveys: Quarterly of the Colorado School of Mines, 62(1), 1 - 326
[2] Fu, J. M., and Feng, E. X., 2000, High-degree electromagnetic field theory, Press of Xi’an Jiaotong University, Xi’an, 1 - 2.
[3] Goldman, M. M., and Fitterman, D. V., 1987, Direct time-domain calculation of the transient response for a rectangular loop over a two-layer medium: Geophysics, 52(7), 997 - 1006.
[4] Griffiths, D. J., 1999, Introduction to Electrodynamics: Prentice Hall, New Jersey, 443 - 454.
[5] Kaufman, A. A., and Keller. G. V., 1983, Frequency and Transient soundings: Elsevier, Houston, 1 - 194.
[6] Nabighian, M. N., 1992, Electromagnetic methods in applied geophysics, Volume 1: Society of Exploration Geophysicists, Tusla, 203 - 252.
[7] Obukhov, G. G., 1968, About some properties of the non-stationary electromagnetic fields in the earth and their applications in electrical prospecting: Izvestia, Phyiscs of the Earth, 9, 62 - 71.
[8] Poddar, M., 1983, A rectangular loop source of current on multilayered earth: Geophysics, 48(1),107 - 109.
[9] Raiche, A. P., and Spies, B. R., 1981, TEM master curves for interpretation of two layered earths: Geophysics, 46, 53 - 64.
[10] Sheng, X. Q., 2007, Electromagnetic comment: Science Press, Beijing, 44 - 49.
[11] Strack, K. M., 1992, Exploration with deep transient electromagnetic: Elsevier, Houston, 1 - 32.
[12] Wang, C. Q., and Zhu, X. L., 2011, Theory and calculation of transient electromagnetic field: Press of Beijing University, Beijing, 42 - 53.
[13] Xue, G. Q., Yan, S., and Zhou, N. N., 2011, Theoretical study on the error caused by dipole hypothesis of large loop TEM response: Chinese J. Geophys. (in Chinese), 54(9), 2389 - 2396.
[1] 高宗慧,殷长春,齐彦福,张博,任秀艳,卢永超. 时间域航空电磁数据变维数贝叶斯反演[J]. 应用地球物理, 2018, 15(2): 318-331.
[2] 李振春,蔺玉曌,张凯,李媛媛,于振南. 时间域波场重构反演[J]. 应用地球物理, 2017, 14(4): 523-528.
[3] 黄威,贲放,殷长春,孟庆敏,李文杰,廖桂香,吴珊,西永在. 三维时间域航空电磁任意各向异性正演模拟[J]. 应用地球物理, 2017, 14(3): 431-440.
[4] 刘云鹤,殷长春,任秀艳,邱长凯. 时间域航空电磁三维并行反演研究[J]. 应用地球物理, 2016, 13(4): 701-711.
[5] 王宗俊, 曹思远, 张浩然, 曲英铭, 袁殿, 杨金浩, 张德龙, 邵冠铭. 能量比法提取品质因子Q[J]. 应用地球物理, 2015, 12(1): 86-92.
[6] 刘云, 王绪本, 王赟. 线源二维时间域瞬变电磁二次场数值模拟[J]. 应用地球物理, 2013, 10(2): 134-144.
[7] 余传涛, 刘鸿福, 张新军, 杨德义, 李自红. 从瞬变电磁响应中提取IP信息的研究[J]. 应用地球物理, 2013, 10(1): 79-87.
[8] 朱凯光, 马铭遥, 车宏伟, 杨二伟, 嵇艳鞠, 于生宝, 林君. 基于主成分的时间域航空电磁数据神经网络反演仿真研究[J]. 应用地球物理, 2012, 9(1): 1-8.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司