APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (3): 305-313    DOI: 10.1007/s11770-013-0392-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于自适应窗函数的最优分数域Gabor变换及其应用
陈颖频1,彭真明1,贺振华2,田琳1,张洞君3
1.电子科技大学光电信息学院,四川 成都 610054
2.成都理工大学“油气藏地质及开发工程”国家重点实验室,四川 成都610059
3.中国石油川庆钻探工程有限公司地球物理勘探公司,四川 成都 610213
The optimal fractional Gabor transform based on the adaptive window function and its application
Chen Ying-Pin1, Peng Zhen-Ming1, He Zhen-Hua2, Tian Lin1, and Zhang Dong-Jun3
1. School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu, Chengdu 610054, China.
2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China.
3. Geophysical Exploration Company, Chuanqing Drilling Engineering Co. Ltd., CNPC, Chengdu 610213, China.
 全文: PDF (1021 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文利用分数阶傅里叶变换(FrFT)的时频旋转性,设计基于广义时间带宽积准则的最优窗函数,从而实现自适应分数域最优Gabor变换,达到提高时频聚集性的目的。该算法首先找到最优旋转因子,然后对信号做该阶次下的FrFT,将经过FrFT后的信号做频谱成像,最后反方向旋转到原时频位置,从而解决了时频轴在旋转中失去物理意义的问题, 这将推进FrFT在高精度储层预测领域的应用。另外,本文从分数域Parseval定理角度提出一种自适应搜索最优旋转因子的方法,降低了算法整体运算复杂度。地震信号谱分解结果表明本文算法获得的谱分解瞬时频率切片显著优于传统Gabor变换。这种自适应时频分析对于复杂地震信号处理具有重大意义。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈颖频
彭真明
贺振华
田琳
张洞君
关键词FrFT   广义时间带宽积   最优旋转因子搜索   自适应最优Gabor变换   地震信号谱分解     
Abstract: We designed the window function of the optimal Gabor transform based on the time–frequency rotation property of the fractional Fourier transform. Thus, we obtained the adaptive optimal Gabor transform in the fractional domain and improved the time–frequency concentration of the Gabor transform. The algorithm first searches for the optimal rotation factor, then performs the p-th FrFT of the signal and, finally, performs time and frequency analysis of the FrFT result. Finally, the algorithm rotates the plane in the fractional domain back to the normal time–frequency plane. This promotes the application of FrFT in the field of high-resolution reservoir prediction. Additionally, we proposed an adaptive search method for the optimal rotation factor using the Parseval principle in the fractional domain, which simplifies the algorithm. We carried out spectrum decomposition of the seismic signal, which showed that the instantaneous frequency slices obtained by the proposed algorithm are superior to the ones obtained by the traditional Gabor transform. The adaptive time frequency analysis is of great significance to seismic signal processing.
Key wordsFrFT   generalized time bandwidth product   optimal rotation factor search   adaptive optimal Gabor transform   spectral decomposition   seismic signals   
收稿日期: 2012-06-26;
基金资助:

本研究由国家自然科学项目(编号:41274127、41301460和40874066)和国家自然科学基金委与中国石油化工股份有限公司联合基金(编号:40839905)联合资助。

作者简介: 陈颖频,2009年于福州大学获电子科学与技术专业工学学士学位,2013年于获电子科技大学信号与信息处理专业工学硕士,主要从事地震信号处理与应用领域的研究。
引用本文:   
陈颖频,彭真明,贺振华等. 基于自适应窗函数的最优分数域Gabor变换及其应用[J]. 应用地球物理, 2013, 10(3): 305-313.
CHEN Ying-Pin,PENG Zhen-Ming,HE Zhen-Hua et al. The optimal fractional Gabor transform based on the adaptive window function and its application[J]. APPLIED GEOPHYSICS, 2013, 10(3): 305-313.
 
[1] Almeida, L. B., 1994, The fractional Fourier transform and time-frequency representations: IEEE Transactions on Signal Processing, 42(11), 3084 - 3091.
[2] Chen, Y. P., Peng, Z. M., 2012, A novel optimal STFrFT and its application in seismic signal processing: The third International Conference on Computational Problem-Solving, Leshan, China, 328 - 331.
[3] Durak, L., and Ankan, O., 2002, Generalized time bandwidth product optimal short time Fourier transformation: IEEE conference publications, 2, 1465 - 1468.
[4] Liu, J., and Marfurt, K. J., 2007, Instantaneous spectral attributes to detect channels: Geophysics, 72(2), 23 - 31.
[5] Liu, X. W., Liu, W. Y., Liu,H., and Li, Y. M., 2007, Generalized seismic signal time-frequency analysis and numerical algorithms: Computing techniques for geophysical and geochemical exploration (in Chinese), 29(5), 386 - 390.
[6] Montana, C. A., and Margrave, G. F., 2004, Spatial prediction filtering in fractional Fourier domains: SEG Annual, 41(2), 241 - 244.
[7] Ozaktas, H. M., Ankan, O., Kutay, M. A., and Bozdagt, G., 1996, Digital Computation of the Fractional Fourier Transform: IEEE Transactions on signal processing, 44(9), 2141 - 2150.
[8] Ozaktas, H. M., and Kutay, M. A., 1999, Introduction to the fractional Fourier transform and its applications: Advances in imaging and electron, volume 106, 239 - 291.
[9] Sinha, S., Routh, P. S., Anno, P. D., and Castagna, J. P. C., 2005, Spectral decomposition of seismic data with continuous-wavelet transform: Geophysics, 70(6), 19 - 25.
[10] Xu, D.P. and Guo, K., 2012, Fractional S transform - Part 1: Theory: Applied geophysics, 9(1), 73 - 79.
[11] Wang, Z. W., Wang, X. L., Xiang, W., Liu, Q. H., Zhang, X. A., and Yang, C., 2012, Reservoir information extraction using a fractional Fourier transform and a smooth pseudo Wigner-Ville distribution: Applied geophysics, 9(4), 391 - 400.
[12] Wexler, J., and Raz, S., 1990, Discrete Gabor expansions: Signal Processing, 21(3), 207 - 221.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司