APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2009, Vol. 6 Issue (2): 166-174    DOI: 10.1007/s11770-009-0018-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
地球物理资料群体智能反演
袁三一,王尚旭,田楠
中国石油大学CNPC物探重点实验室,北京 102249
Swarm intelligence optimization and its application in geophysical data inversion
Yuan San-Yi1, Wang Shang-Xu1, and Tian Nan1

1. CNPC Key Laboratory of Geophysical Exploration, Key Laboratory of Earth Prospecting and Information Technology, China University of Petroleum, Beijing 102249, China.

 全文: PDF (615 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 复杂地球物理资料的反演问题往往是一个求解多参数非线性多极值的最优解问题。而鸟和蚂蚁等群体觅食的过程,正好与寻找地球物理反演最优解的过程相似。基于自然界群体协调寻优的思想,本文提出了交叉学科的群体智能地球物理资料反演方法,并给出了其对应的数学模型。用一个有无限多个局部最优解的已知模型对该类方法进行了试验。然后,将它们应用到了不同的复杂地球物理反演问题中:(1)对噪声敏感的线性问题;(2)非线性和线性同步反演问题;(3)非线性问题。反演结果表明,群体智能反演是可行的。与常规遗传算法和模拟退火法相比,该类方法有收敛速度相对快、收敛精度相对高等优点;与拟牛顿法和列文伯格-马夸特法相比,该类方法有能跳出局部最优解等优点。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁三一
王尚旭
田楠
关键词群体智能反演   地球物理资料   多极值   粒子群优化算法   改进的蚁群算法     
Abstract: The inversions of complex geophysical data always solve multi-parameter, nonlinear, and multimodal optimization problems. Searching for the optimal inversion solutions is similar to the social behavior observed in swarms such as birds and ants when searching for food. In this article, first the particle swarm optimization algorithm was described in detail, and ant colony algorithm improved. Then the methods were applied to three different kinds of geophysical inversion problems: (1) a linear problem which is sensitive to noise, (2) a synchronous inversion of linear and nonlinear problems, and (3) a nonlinear problem. The results validate their feasibility and efficiency. Compared with the conventional genetic algorithm and simulated annealing, they have the advantages of higher convergence speed and accuracy. Compared with the quasi-Newton method and Levenberg-Marquardt method, they work better with the ability to overcome the locally optimal solutions.
Key wordsSwarm intelligence optimization   geophysical inversion   multimodal   particle swarm optimization algorithm   
收稿日期: 2008-11-15;
基金资助:

本研究由国家973项目(编号:2007CB209600)和地下信息探测技术与仪器教育部重点实验室(中国地质大学,北京)开放课题项目(编号:GDL0706)联合资助。

引用本文:   
袁三一,王尚旭,田楠. 地球物理资料群体智能反演[J]. 应用地球物理, 2009, 6(2): 166-174.
YUAN San-Yi,WANG Shang-Xu,TIAN Nan. Swarm intelligence optimization and its application in geophysical data inversion[J]. APPLIED GEOPHYSICS, 2009, 6(2): 166-174.
 
[1] Chen, Y., 2004, Ant colony system for continuous function optimization: Journal of Sichuan University (Engineering Science Edition), 36(6), 117 - 120.
[2] Chen, S. Q., Wang, S. X., and Zhang, Y. G., 2005, Ant colony optimization for the seismic nonlinear inversion: 75th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1732 - 1734.
[3] Colorni, A., Dorigo, M., and Maniezzo, V., 1991, Distributed optimization by ant colonies: Proceedings of the First European Conference on Artificial Life, Paris, 134 - 142.
[4] Dorigo, M., Maniezzo, V., and Colorni, A., 1996, The ant system: optimization by a colony of cooperating agents: IEEE Transactions on Systems, Man, and Cybernetics-Part B (S1083-4419), 26(1), 29 - 41.
[5] Eberhart, R. C., and Shi, Y., 2004, Guest editorial special issue on particle swarm optimization: IEEE Transactions on Evolutionary Computation, 8(3), 201-203.
[6] Holland, J. H., 1975, Adaptation in natural and artificial systems: The University of Michigan Press, Ann Arbor.
[7] Hu, B., Tang, G., Ma, J. W., and Yang, H. Z., 2007, Parametric inversion of viscoelastic media from VSP data using a genetic algorithm: Applied Geophysics, 4(3), 194 - 200.
[8] Kennedy, J., and Eberhart, R. C., 1995, Particle swarm optimization: IEEE International Conference on Neural Networks, IV. Piscataway, NJ, IEEE Service Center, 1942 - 1948.
[9] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., 1983, Optimization by simulated annealing: Science, 220(4598), 671 - 680.
[10] Li, S. Y., and Li, P. C., 2007, Quantum particle swarms algorithm for continuous space optimization: Chinese Journal of Quantum Electronics (in Chinese), 24(5), 569 - 574.
[11] Luo, H. M., Wang, J. Y., Zhu, P. M., Shi, X. M., and He, G. M., 2008, Study of geophysical inversion based on immunity algorithm: Oil Geophysical Prospecting (in Chinese), 43(2), 222 - 228.
[12] Ma, X. Q., 2002, Simultaneous inversion of prestack seismic data for rock properties using simulated annealing: Geophysics, 67(6), 1877 - 1885.
[13] Pan, B. Z., Xue, L. F., Huang, B. Z., Yan, G. J., and Zhang, L. H., 2008, Evaluation of volcanic reservoirs with the “QAPM mineral model” using a genetic algorithm: Applied Geophysics, 5(1), 1-8.
[14] Peng, X. Y., Peng, Y., and Dai, Y. F., 2003, Swarm intelligence theory and applications: Acta Electronica Sinica (in Chinese), 31(12A), 1982 - 1988.
[15] Shaw, R., and Srivastava S., 2007, Particle swarm optimization: A new tool to invert geophysical data: Geophysics, 72(2), 75 - 83.
[16] Sen, M. K., and Stoffa, P. L., 1991, Nonlinear one-dimensional seismic waveform inversion using simulated annealing: Geophysics, 56, 1624 - 1638.
[17] Shi, X. M., Wang, J. Y., Yi, Y. Y., Yuan, X. X., Wang, X. M., and Zhang, Y. M., 2007, A study on the simulated atomic transition algorithm for geophysical inversion: Chinese Journal of Geophysics (in Chinese), 50(1), 305 - 312.
[18] Stoffa, P. L., and Sen, M. K., 1991, Non-linear multiparameter optimization using genetic algorithm: Inversion of plane-wave seismograms: Geophysics, 56, 1794 - 1810.
[19] Wang, J. Y., 2002, Inverse theory in geophysics: Higher Education Press (in Chinese), Beijing.
[20] Yang, W. C., 1997, Theory and methods of geophysical inversion: Geological Publishing House (in Chinese), Beijing.
[21] Yi, Y. Y., Yuan, S. Y., and Shi, X. M., 2007, Wave impedance inversion using PSO algorithm: Second International Symposium on Intelligence Computation and Applications, China, 712 - 714.
[22] Yu, P., Dai, M. G., Wang, J. L., and Wu, J. S., 2008, Joint inversion of gravity and seismic data based on common grid model with random density and velocity distributions: Chinese Journal of Geophysics (in Chinese), 51(3), 845 - 852.
[23] Yu, Y., Li, Y. S., and Yu, X. C., 2008, Application of particle swarm optimization in the engineering optimization design: Chinese Journal of Mechanical Engineering (in Chinese), 44(12), 226-231.
[24] Zhang, H. B., Shang, Z. P., Yang, C. C., and Duan, Q. L., 2005, Estimation of regular parameters for the impedance inversion: Chinese Journal of Geophysics (in Chinese), 48(1), 181 - 188.
[25] Zhou, H., Takenaka, T., and Tanaka, T., 2005, Time-domain reconstruction of lossy objects using dipole antennas: Microwave and Optical Technology Letters, 44(3), 238 - 243.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司