APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2009, Vol. 6 Issue (2): 159-165    DOI: 10.1007/s11770-009-0014-1
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
高分辨率非线性三维整体反演研究
李勇1,王绪本1,李志荣2,李琼1,李正文1
1. 成都理工大学“地球探测与信息技术”教育部重点实验室,四川成都 610059
2. 川庆钻探工程公司地球物理勘探公司,四川成都 610213
High resolution 3D nonlinear integrated inversion
Li Yong1, Wang Xu-Ben1, Li Zhirong2, Li Qiong1, and Li Zhengwen1
1. Key Lab of Earth Exploration & Information Technology, Chengdu University of Technology, Chengdu 610059, China.
2. CNPC Chuanqing Drilling Engineering Company, Limited, Sichuan Geophysical Company, Chengdu 610213, China.
 全文: PDF (787 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 高分辨率非线性三维整体反演方法是基于非线性理论,在层位控制下,将工区多井(或全部井)的测井数据与井旁地震道数据输入具有多输入多输出的网络,同时进行整体训练,可获得整个工区的自适应权函数,并建立综合非线性映射关系,并根据储层在纵横方向上的地质变化特征更新这种非线性映射关系,这样,就能对反演过程及其反演结果起到约束和控制的作用,从而获得稳定且分辨率高的地震反演剖面(速度反演剖面/波阻抗反演剖面/密度反演剖面),实现整体反演,该方法通过模型试算和实际资料处理,获得较好的地质效果,证明该方法精度高、实用性强,可用于储层的定量分析。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李勇
王绪本
李志荣
李琼
李正文
关键词高分辨率   整体反演   多输入多输出网络   工区函数   混合智能学习算法     
Abstract: The high resolution 3D nonlinear integrated inversion method is based on nonlinear theory. Under layer control, the log data from several wells (or all wells) in the study area and seismic trace data adjacent to the wells are input to a network with multiple inputs and outputs and are integratedly trained to obtain an adaptive weight function of the entire study area. Integrated nonlinear mapping relationships are built and updated by the lateral and vertical geologic variations of the reservoirs. Therefore, the inversion process and its inversion results can be constrained and controlled and a stable seismic inversion section with high resolution with velocity inversion, impedance inversion, and density inversion sections, can be gained. Good geologic effects have been obtained in model computation tests and real data processing, which verified that this method has high precision, good practicality, and can be used for quantitative reservoir analysis.
Key wordshigh resolution   integrated inversion   network with multiple input and output   hybrid intelligent learning algorithm   
收稿日期: 2008-11-07;
基金资助:

本研究由国家自然科学基金重点项目(编号:40839909)资助。

引用本文:   
李勇,王绪本,李志荣等. 高分辨率非线性三维整体反演研究[J]. 应用地球物理, 2009, 6(2): 159-165.
LI Yong,WANG Xu-Ben,LI Zhi-Rong et al. High resolution 3D nonlinear integrated inversion[J]. APPLIED GEOPHYSICS, 2009, 6(2): 159-165.
 
[1] An, H. W., 2002, Chaotic dynamical and detection method for seismic reservoir information: Phd Thesis, Chengdu University of Technology, Chengdu.
[2] Brac, J., 1988, Inversion with a priori information; an approach to integrated stratigraphic interpretation: 58th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,?841 - 844.
[3] Carron, D., and Schlumberger, E. P., 1988, Well guided stratigraphic inversion of borehole and surface seismic sections: 58th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts,?837 - 840.
[4] Cooke, D. A., and Schneider, W. A., 1983, Generalized linear inversion of reflection seismic data: Geophysics, 48(6), 665 - 676.
[5] Glover, F., 1986, Future paths for integer programming and links to artificial intelligent: Computers and Operations Research, 13(5),533 - 549.
[6] Goldberg, D. E., 1989, Genetic algorithms in search, optimization, and machine learning: Addison-Wesley Publishing Company, Inc., Reading, MA, USA.
[7] Gluck, S., Juve, E., and Lafet, Y., 1997, High-resolution impedance layering through 3-D stratigraphic inversion of poststack seismic data: The Leading Edge, 16(9), 1309 - 1315.
[8] Jang, S. R., 1993, ANFIS: Adaptive-Network-Based Fuzzy Inference System: IEEE Transaction on System Man and Cybernetics, 23(3), 665 - 685.
[9] Lavielle, M., 1991, 2-D Bayesian deconvolution: Geophysics, 56(12), 2008 - 2018.
[10] Li, Y., 2007, Reservoir imaging mergence and nonlinear detection method for gas-filled reservoirs: Phd Thesis, Chengdu University of Technology, Chengdu, China.
[11] Li, Y., Li, Z. W., Li, Z. R., and Li, Q., 2007, Reservoir density prediction techniques: Oil Geophysical Prospecting (in Chinese), 42(2),216 - 219.
[12] Li, Y., Song, Z. P., Li, Q., and Li, Z. W., 2008, Volcanics body seismic recognition technique and applications: Jouranl of Mineralogy and Petrology (in Chinese), 28(3), 105 - 110.
[13] Martinez, R. D., Cornish, B. E., and Rebec, A. J.,1992, Complex reservoir characterization by multiparameter constrained inversion: Investigations in Geophysics, 7, 224 - 234.
[14] Oldenburg, D. W., Scheuer, T., and Levy, S., 1983, Recovery of the acoustic impedance from reflection seismograms: Geophysics, 48(10), 1318 - 1337.
[15] Shen, G. Q., Meng, X. J., Xia, J. Z., Zhang, X. F., and Li, X., 2007, Detailed reservoir inversion addressing geological problems in reservoir development: Applied Geophysics, 4(1), 58 - 65.
[16] Ulrych, T. J., 1999, The whiteness hypothesis: reflectivity, chaos, inversion and Enders: Geophysics, 64, 1512-1523.
[17] Ursin, B., and Holberg, O., 1985, Maximum-likelihood estimation of seismic impulse response: Geophysical Prospecting, 33(2), 233 - 251.
[18] Walker, C., and Ulrych, T. J., 1983, Autoregressive recovery of the acoustic impedance: Geophysics, 48(10), 1338 - 1350.
[19] Wang, X. P., and Cao, L. M., 2002, Genetic algorithm-theory, application and software realization (in Chinese): Xi’an Communication University Press, ,Xi’an, China.
[20] Whitleyet, D., 1990, Genetic algorithms and neural networks: optimizing connections and connectivity: Parallel Computation, 14(3), 347 - 361.
[21] Xiong, Z., 2006, Expectation for oil/gas geophysics in the middle of early 21 century: (in Chinese) Petroleum Industry Press, Beijing.
[22] Yang, W.C.,1993, Nonlinear chaotic inversion of seismic traces: II. Lyapunov exponents and attractors: Chinese Journal of Geophysics (in Chinese), 36(3),376 - 387.
[23] Zhang, X. J., Li, Q. X., Yang, L., Li, X. M., and Fu, L., 1999, Seismic trace inversion using borehole restraint and chaotic control: (in Chinese) Oil Geophysical Prospecting, 34(1), 8 - 13.
[24] Zhou, Z. S., and Zhou, X. X., 1993, Band-constrained inversion: Oil Geophysical Prospecting (in Chinese), 28(5), 523 - 536.
[1] 武绍江,王一博,马玥,常旭. 基于L0范数的超高分辨率最小二乘叠前Kirchhoff深度偏移[J]. 应用地球物理, 2018, 15(1): 69-77.
[2] 王德营,黄建平,孔雪,李振春,王姣. 基于时频二次谱的提高地震资料分辨率方法[J]. 应用地球物理, 2017, 14(2): 236-246.
[3] 宋建国, 宫云良, 李珊. 斜缆数据频率域高分辨率Radon变换与虚反射消除方法[J]. 应用地球物理, 2015, 12(4): 564-572.
[4] 李志娜, 李振春, 王鹏, 徐强. λ-f域高分辨率Radon变换多次波压制方法研究[J]. 应用地球物理, 2013, 10(4): 433-441.
[5] 李子顺. 高密度偏移技术原理与应用[J]. 应用地球物理, 2012, 9(3): 286-292.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司