APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2009, Vol. 6 Issue (2): 122-128    DOI: 10.1007/s11770-009-0013-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于ARMA模型非因果空间预测滤波
刘志鹏1,2,陈小宏1,2,李景叶2,3
1. 中国石油大学CNPC物探重点实验室,北京 102249
2. 中国石油大学油气资源与探测国家重点实验室,北京 102249
3. 中国石油大学石油天然气成藏机理教育部重点实验室,北京 102249
Noncausal spatial prediction filtering based on an ARMA model
Liu Zhipeng1,2, Chen Xiaohong1,2, and Li Jingye2,3
1. CNPC Key Lab of Geophysical Exploration, China University of Petroleum, Beijing 102249, China.
2. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing 102249, China.
3. Key Laboratory for Hydrocarbon Accumulation Mechanism, Ministry of Education, China University of Petroleum, Beijing 102249, China.
 全文: PDF (979 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 常规频域预测滤波方法是建立在自回归(autoregressive, AR)模型基础上的,这导致滤波过程中前后假设的不一致,即首先利用源噪声的假设计算误差剖面,却又将其作为加性噪声而从原始剖面中减去来得到有效信号。本文通过建立自回归-滑动平均 (autoregressive /moving-average, ARMA) 模型,首先求解非因果预测误差滤波算子,然后利用自反褶积形式投影滤波过程估计加性噪声,进而达到去除随机噪声目的。此过程有效避免了基于AR模型产生的不一致性。在此基础上,将一维ARMA 模型扩展到二维空间域,实现了基于二维ARMA 模型频域非因果空间预测滤波在三维地震资料随机噪声衰减中的应用。模型试验与实际资料处理表明该方法在很好保留反射信息同时,压制随机噪声更加彻底,明显优于常规频域预测去噪方法。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘志鹏
陈小宏
李景叶
关键词AR模型   ARMA 模型   非因果   随机噪声   自反褶积   投影滤波     
Abstract: Conventional f-x prediction filtering methods are based on an autoregressive model. The error section is first computed as a source noise but is removed as additive noise to obtain the signal, which results in an assumption inconsistency before and after filtering. In this paper, an autoregressive, moving-average model is employed to avoid the model inconsistency. Based on the ARMA model, a noncasual prediction filter is computed and a self-deconvolved projection filter is used for estimating additive noise in order to suppress random noise. The 1-D ARMA model is also extended to the 2-D spatial domain, which is the basis for noncasual spatial prediction filtering for random noise attenuation on 3-D seismic data. Synthetic and field data processing indicate this method can suppress random noise more effectively and preserve the signal simultaneously and does much better than other conventional prediction filtering methods.
Key wordsAR model   ARMA model   noncasual   random noise   self-deconvolved   projection filtering   
收稿日期: 2008-12-16;
基金资助:

本研究由国家自然科学基金项目(40604016)和国家高技术研究发展计划(863计划)(2006AA09A102-09,2007AA06Z229)资助。

引用本文:   
刘志鹏,陈小宏,李景叶. 基于ARMA模型非因果空间预测滤波[J]. 应用地球物理, 2009, 6(2): 122-128.
LIU Zhi-Peng,CHEN Xiao-Hong,LI Jing-Ye. Noncausal spatial prediction filtering based on an ARMA model[J]. APPLIED GEOPHYSICS, 2009, 6(2): 122-128.
 
[1] Abma, R., and Claerbout, J., 1995, Lateral prediction for noise attenuation by t-x and f-x techniques: Geophysics, 60(6), 63 - 65.
[2] Canales, L., 1984, Random noise reduction: 54th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 525 - 527.
[3] Chase, M., 1992, Random noise reduction by FXY prediction filtering: Exploration Geophysics, 23, 51 - 56.
[4] Hornbostel, S., 1991, Spatial prediction filtering in the t-x and f-x domains: Geophysics, 56, 2019 - 2026.
[5] Gulunay, N., 2000, Noncausal spatial prediction filtering for random noise reduction on 3-D poststack data: Geophysics, 65(5), 1641 - 1653.
[6] Gao, J. H., Mao, J., Man, W. S., Chen, W. C., and Zheng, Q. Q., 2006, On the denoising method of prestack seismic data in wavelet domain: Chinese J. Geophys. (in Chinese), 49(4), 1155 - 1163.
[7] Guo, J. Y., Zhou, X. Y., and Yang, H. Z., 1995, Attenuation of random noise in (f-x,y) domain: OGP, 30(2), 207 - 215.
[8] Li, G. F., 1995, Full 3-D random-noise attenuation: OGP, 30(3), 310 - 318.
[9] Liu, C., Li, H. X., Tao, C. H., Liu, Y., Wang, D., Su, W., and Gu, C. H., 2007, A new fuzzy nesting multilevel median filter and its application to seismic data processing: Chinese J. Geophys. (in Chinese), 50(5), 1534 - 1542.
[10] Mauricio, D., and Henning, K., 2000, FX ARMA filters: 70th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2092 - 2095.
[11] Ozdemir, A., Ozbek, A., Ferber, R., and Zerouk, K., 1999, F-xy projection filtering using helical transformation: 69th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1231 - 1234.
[12] Soubaras, R., 1994, Signal-preserving random noise attenuation by the f-x projection: 64th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1576 - 1579.
[13] Soubaras, R., 1995, Deterministic and statistical projection filtering for signal-preserving noise attenuation: 65th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 711 - 714.
[14] Soubaras, R., 2000, 3D projection filtering for noise attenuation and interpolation: 70th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2096 - 2099.
[15] Treitel, S., 1974, The complex Wiener filter: Geophysics, 39, 169 - 173.
[16] Wang, Y., 1999, Random noise attenuation using forward-backward linear prediction: Journal of Seismic Exploration, 8, 133 - 142.
[17] Zhong, W., Yang, B. J., and Zhang, Z., 2006, Research on application of polynomial fitting technique in highly noisy seismic data: Progress in Geophysics (in Chinese), 21(1), 184 - 189.
[1] 曹中林,曹俊兴,巫芙蓉,何光明,周强,吴育林. 基于分数阶傅里叶变换的混合Cadzow滤波法[J]. 应用地球物理, 2018, 15(2): 271-279.
[2] 常德宽,杨午阳,王一惠,杨庆,魏新建,冯小英. 基于非局部贝叶斯地震数据随机噪声压制方法[J]. 应用地球物理, 2018, 15(1): 91-98.
[3] 甘叔玮, 王守东, 陈阳康, 陈江龙, 钟巍, 张成林. 基于相似度权重算子和f − x域经验模态分解的随机噪声衰减方法[J]. 应用地球物理, 2016, 13(1): 127-134.
[4] 马彦彦, 李国发, 王峣钧, 周辉, 张保江. F-X域复数经验模态分解去噪方法[J]. 应用地球物理, 2015, 12(1): 47-54.
[5] 刘财, 陈常乐, 王典, 刘洋, 王世煜, 张亮. 基于二维希尔伯特变换的地震倾角求取方法及其在随机噪声衰减中的应用[J]. 应用地球物理, 2015, 12(1): 55-63.
[6] 尚帅, 韩立国, 吕庆田, 谭尘青. 自适应非局部均值地震随机噪声压制[J]. 应用地球物理, 2013, 10(1): 33-40.
[7] 蔡涵鹏, 贺振华, 黄德济. 基于混合时频分析技术的地震数据噪声压制[J]. 应用地球物理, 2011, 8(4): 319-327.
[8] 刘华锋, 陈小宏, 宋家文, 刘国昌. 基于非因果滤波器的多次波匹配相减方法[J]. 应用地球物理, 2011, 8(1): 27-35.
[9] 王德利, 仝中飞, 唐晨, 朱恒. Curvelet阈值迭代法地震随机噪声压制[J]. 应用地球物理, 2010, 7(4): 315-324.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司