APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2009, Vol. 6 Issue (2): 113-121    DOI: 10.1007/s11770-009-0012-3
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
弹性波正演模拟中改进的非分裂式PML实现方法
秦臻1,2,卢明辉1,郑晓东1,姚姚2,张才1,宋建勇3
1. 中国石油勘探开发研究院物探所,北京 100083
2. 中国地质大学地球物理与空间信息学院,武汉 430074
3. 中国石油大学(北京)资源与信息学院,北京 102249
The implementation of an improved NPML absorbing boundary condition in elastic wave modeling
Qin Zhen1,2, Lu Ming-Hui1, Zheng Xiao-Dong1, Yao Yao2, Zhang Cai1, and Song Jian-Yong3
1. Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
2. Institute of Geophysics & Geomatics , China University of Geosciences, Wuhan 430074, China.
3. Faculty of Resource & Information, China University of Petroleum, Beijing 102249, China.
 全文: PDF (461 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在弹性波有限差分正演模拟中,吸收边界条件常用来吸收截断边界处引入的不期望边界反射,其中完全匹配层(PML)吸收边界条件被认为是目前最理想的吸收边界条件。但是PML吸收边界条件的传统实现却存在着很大不足:全局分裂式PML吸收边界条件实现简单但是需要占用太多内存;局部分裂式PML吸收边界条件需要考虑多个边界和角点区域,编程实现非常复杂;非分裂式PML吸收边界条件由于涉及卷积运算,计算量很大;此外,当场源靠近截断边界时常规PML吸收性能有所下降。本文基于非分裂式PML吸收边界条件,结合复频移伸展函数,提出了一种新的数值实现方法,其计算方程简单、占用内存小、编程实现容易,是对PML介质理论数值实现的改进和完善。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦臻
卢明辉
郑晓东
姚姚
张才
宋建勇
关键词PML   吸收边界条件   非分裂   弹性波正演     
Abstract: In elastic wave forward modeling, absorbing boundary conditions (ABC) are used to mitigate undesired reflections from the model truncation boundaries. The perfectly matched layer (PML) has proved to be the best available ABC. However, the traditional splitting PML (SPML) ABC has some serious disadvantages: for example, global SPML ABCs require much more computing memory, although the implementation is easy. The implementation of local SPML ABCs also has some difficulties, since edges and corners must be considered. The traditional non-splitting perfectly matched layer (NPML) ABC has complex computation because of the convolution. In this paper, based on non-splitting perfectly matched layer (NPML) ABCs combined with the complex frequency-shifted stretching function (CFS), we introduce a novel numerical implementation method for PML absorbing boundary conditions with simple calculation equations, small memory requirement, and easy programming.
Key words:   
收稿日期: 2008-12-10;
基金资助:

本研究由中国国家发展改革委员会项目([2005]2372)和中国石油天然气股份有限公司科技风险创新研究项目(060511-1-3)资助。

引用本文:   
秦臻,卢明辉,郑晓东等. 弹性波正演模拟中改进的非分裂式PML实现方法[J]. 应用地球物理, 2009, 6(2): 113-121.
QIN Zhen,LU Ming-Hui,ZHENG Xiao-Dong et al. The implementation of an improved NPML absorbing boundary condition in elastic wave modeling[J]. APPLIED GEOPHYSICS, 2009, 6(2): 113-121.
 
[1] Appelö, D., and Kreiss, G., 2006, A new absorbing layer for elastic waves: Journal of Computational Physics, 215(2), 642 - 660.
[2] Basu, U., and Chopra, A. K., 2004, Perfectly matched layers for transient elastodynamics of unbounded domains: International Journal for Numerical Methods in Engineering, 59(8), 1039 - 1074.
[3] Bérenger, J. P., 1994, A perfectly matched layer for absorption of electromagnetic waves: Journal of Computational Physics, 114(2), 185 - 200.
[4] Chen, Y. H., Chew, W. C., and Oristaglio, M. L., 1997, Application of perfectly matched layers to the transient modeling of subsurface EM problems: Geophysics, 62(6), 1730 - 1736.
[5] Chew, W. C., and Weedon, W. H., 1994, A 3-D perfectly matched medium from modified Maxwell’s equations with stretched coordinates: Microwave and Optical Technology Letters, 7(13), 599 - 604
[6] Chew, W. C., and Liu, Q. H., 1996, Perfectly matched layers for elastodynamics: A new absorbing boundary condition: Journal of Computational Acoustics, 4(4), 341 - 359.
[7] Cohen, G., and Fauqueux, S., 2005, Mixed spectral finite elements for the linear elasticity system in unbounded domains: SIAM Journal on Scientific Computing, 26(3), 864 - 884.
[8] Collino, F., and Tsogka C., 2001, Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media: Geophysics, 66(1), 294 - 307.
[9] Drossaert, F. H. and Giannopoulos, A., 2007, A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves: Geophysics, 72(2), T9 - T17.
[10] Festa, G., and Nielsen S., 2003, PML absorbing boundaries: Bulletin of the Seismological Society of America, 93(2), 891 - 903.
[11] Festa, G., and Vilotte, J. P., 2005, The Newmark scheme as velocity-stress time-staggering: An efficient PML implementation for spectral-element simulations of elastodynamics: Geophysical Journal International, 161(3), 789 - 812.
[12] Hastings, F. D., Schneider, J. B., and Broschat, S. L., 1996, Application of the perfectly matched layer (PML) absorbing boundary condition to elastic wave propagation: Journal of the Acoustical Society of America, 100(5), 3061 - 3069.
[13] Higdon, R. L., 1991, Absorbing boundary condition for elastic waves: Geophysics, 56(2), 231 - 241.
[14] Komatitsch , D., and Martin, R., 2007, An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation: Geophysics, 72(5),SM155 - SM167
[15] Komatitsch, D., and Tromp J., 1999, Introduction to the spectral-element method for 3-D seismic wave propagation: Geophysical Journal International, 139(3), 806 - 822.
[16] Kuzuoglu, M., and Mittra, R., 1996, Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers: IEEE Microwave and Guided Wave Letters, 6(2), 447 - 449.
[17] Liao, Z. P., Wong, H. L., and Yuan, Y. F., 1984, A transmitting boundary for transient wave analysis: Scientia Sinica, 27(6), 1063 - 1076.
[18] Ma, S., and Liu, P., 2006, Modeling of the perfectly matched layer absorbing boundaries and intrinsic attenuation in explicit finite-element methods: Bulletin of the Seismological Society of America, 96(5), 1779 - 1794.
[19] Marfurt, K. J., 1984, Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equation: Geophysics, 49(5), 533 - 549.
[20] Rappapport, C. M., 1995, Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space: IEEE Microwave Guided Wave Lett., 5(3), 90 - 92.
[21] Shin, C., 1995, Sponge boundary condition for frequency-domain modeling: Geophysics, 60(6), 1870 - 1874.
[22] Song R. L., Ma J., and Wang K. X., 2005, The application of non-splitting perfectly matched layer in numerical modeling of wave propagation in poroelastic media: Applied geophysics, 2(4), 216 - 222.
[23] Teixeira, F. L., and Chew, W. C., 1999, On causality and dynamic stability of perfectly matched layers for FDTD simulations: IEEE Transactions on Microwave Theory and Techniques, 47(6), 775 - 785.
[24] Tsili, W. and Tang, X. M., 2003, Finite-difference modeling of elastic wave propagation: A nonsplitting perfectly matched layer approach: Geophysics, 68(5), 1749 - 1755.
[25] Wang, T., and Oristaglio, M. L., 2000, 3-D simulation of GPR surveys over pipes in dispersive soils: Geophysics, 65(5), 1560 - 1568.
[1] 王兵,张阔,陶果,刘鹤,张晓亮. 基于混合PML的频域有限元声反射测井正演模拟[J]. 应用地球物理, 2018, 15(1): 35-45.
[2] 刘鑫,刘洋,任志明,蔡晓慧,李备,徐世刚,周乐凯. 三维弹性波正演模拟中的混合吸收边界条件[J]. 应用地球物理, 2017, 14(2): 270-278.
[3] 张建敏,何兵寿,唐怀谷. 三维TTI介质中的纯准P波方程及求解方法[J]. 应用地球物理, 2017, 14(1): 125-132.
[4] 刘洋, 李向阳, 陈双全. 高精度双吸收边界条件在地震波场模拟中的应用[J]. 应用地球物理, 2015, 12(1): 111-119.
[5] 赵建国, 史瑞其. 时域有限元弹性波模拟中的位移格式完全匹配层吸收边界[J]. 应用地球物理, 2013, 10(3): 323-336.
[6] 杨皓星, 王红霞. 用于地震波场模拟的PML边界衰减因子研究[J]. 应用地球物理, 2013, 10(1): 63-70.
[7] 常锁亮, 刘洋. 结合边界条件的截断高阶隐式有限差分方法[J]. 应用地球物理, 2013, 10(1): 53-62.
[8] 杜启振, 孙瑞艳, 秦童, 朱钇同, 毕丽飞. 多分量联合逆时偏移最佳匹配层吸收边界[J]. 应用地球物理, 2010, 7(2): 166-173.
[9] 周辉, 王尚旭, 李国发, 沈金松. 复杂构造地震波场分析[J]. 应用地球物理, 2010, 7(2): 185-192.
[10] 刘炯, 马坚伟, 杨慧珠. SH波场中完全匹配层吸收边界研究[J]. 应用地球物理, 2009, 6(3): 267-274.
[11] 廖建平, 王华忠, 马在田. 二维频率空间域25点优化系数差分格式弹性波数值模拟[J]. 应用地球物理, 2009, 6(3): 259-266.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司