APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2009, Vol. 6 Issue (2): 105-112    DOI: 10.1007/s11770-009-0017-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
混合法重建三维数字岩心研究
刘学锋,孙建孟,王海涛
中国石油大学,地球资源与信息学院,山东东营 257061
Reconstruction of 3-D digital cores using a hybrid method
Liu Xue-Feng1, Sun Jian-Meng1, and Wang Hai-Tao1
1. College of Geo-resource and Information, China University of Petroleum, Dongying 257061, China.
 全文: PDF (583 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 三维数字岩心描述了岩石的微观孔隙结构。X射线CT扫描是获取三维数字岩心最准确和直接的方法,但实验成本高。本文结合岩石颗粒沉积模拟和模拟退火算法,提出了重建三维数字岩心的混合法,在岩石二维图像基础上重建三维数字岩心。利用岩石颗粒沉积算法构建初始数字岩心,作为模拟退火算法的初始状态。运用模拟退火算法调整岩石颗粒和孔隙的相对位置,使三维数字岩心与岩心二维图像具有相似的自相关函数,从而建立三维数字岩心。与传统模拟退火算法相比,该方法运算时间明显减小。运用局部孔隙度理论定量比较了重建数字岩心和岩心X射线微CT图像,两种三维孔隙介质具有相似的均质性和孔隙连通性。利用有限元方法和格子玻尔兹曼方法分别模拟了重建三维数字岩心的地层因素和渗透率,数值模拟结果与实验结果相符,改善了传统模拟退火算法重建数字岩心的传导特性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘学锋
孙建孟
王海涛
关键词数字岩心   模拟退火法   沉积模拟     
Abstract: A 3-D digital core describes the pore space microstructure of rocks. An X-ray micro CT scan is the most accurate and direct but costly method to obtain a 3-D digital core. In this study, we propose a hybrid method which combines sedimentation simulation and simulated annealing (SA) method to generate 3-D digital cores based on 2-D images of rocks. The method starts with the sedimentation simulation to build a 3-D digital core, which is the initial configuration for the SA method. We update the initial digital core using the SA method to match the auto-correlation function of the 2-D rock image and eventually build the final 3-D digital core. Compared with the typical SA method, the hybrid method has significantly reduced the computation time. Local porosity theory is applied to quantitatively compare the reconstructed 3-D digital cores with the X-ray micro CT 3-D images. The results indicate that the 3-D digital cores reconstructed by the hybrid method have homogeneity and geometric connectivity similar to those of the X-ray micro CT image. The formation factors and permeabilities of the reconstructed 3-D digital cores are estimated using the finite element method (FEM) and lattice Boltzmann method (LBM), respectively. The simulated results are in good agreement with the experimental measurements. Comparison of the simulation results suggests that the digital cores reconstructed by the hybrid method more closely reflect the true transport properties than the typical SA method alone.
Key words3-D digital core   simulated annealing method   sedimentation simulation   
收稿日期: 2009-03-10;
基金资助:

本研究由国家自然科学基金项目(40574030)和中石油测井应用基础研究项目(06A30102)资助。

引用本文:   
刘学锋,孙建孟,王海涛. 混合法重建三维数字岩心研究[J]. 应用地球物理, 2009, 6(2): 105-112.
LIU Xue-Feng,SUN Jian-Meng,WANG Hai-Tao. Reconstruction of 3-D digital cores using a hybrid method[J]. APPLIED GEOPHYSICS, 2009, 6(2): 105-112.
 
[1] Arns, C. H., 2002, The influence of morphology on physical properties of reservoir rocks: PhD Thesis, The University of New South Wales.
[2] Biswal, B., Manwart, C., Hilfer R, Bakke, S., and Oren, P. E., 1999, Quantitative analysis of experimental and synthetic microstructures for sedimentary rock: Physica A, 273(3), 452 - 475.
[3] Dvorkin, J., Walls, J., Tutuncu, A., Prasad, M., Nur, A., and Mese, A., 2003, Rock property determination using digital rock physics: 73rd Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 1660 - 1663.
[4] Fredrich, J., Greaves, K. H., and Martin, J. W., 1993, Pore geometry and transport properties of Fontainebleau sandstone: International Journal of Rock Mechanics and Mining Sciences, 30(7), 691 - 697.
[5] Garboczi, E. J., 1998, Finite element and finite difference programs for computing the linear electric and linear elastic properties of digital images of random materials: Technical report, NIST Internal Report 6269.
[6] Hazlett, R. D., 1997, Statistical characterization and stochastic modeling of pore networks in relation to fluid flow: Mathematical Geology, 29(4), 801 - 822.
[7] Hidajat, I., Rastogi, A., Singh, M., and Mohanty, K. K., 2002, Transport properties of porous media from thin sections: SPE 69623.
[8] Jacquin, C.G., 1964. Correlation entre la permeabilite et les caracteristiques geometriques du gres de Fontainebleau: Revue de I’iInstitut Francais du Perole, 19, 921 - 937.
[9] Joshi, M., 1974, A class of stochastic models for porous media: PhD Thesis, University of Kansas.
[10] Keehm, Y., 2003, Computational rock physics: transport properties in porous media and applications: PhD Thesis, Stanford: Stanford University.
[11] Liu, X. F., Sun, J. M., and Wang, H. T., 2009, Numerical simulation of rock electrical properties based on digital cores: Applied Geophysics, 6(1), 1 - 7.
[12] Oren, P. E., and Bakke, S., 2000, Process based reconstruction of sandstones and predictions of transport properties: Transport in Porous Media, 46(2), 311 - 343.
[13] Oren, P. E., and Bakke, S., 2003, Reconstruction of Berea sandstone and pore-scale modeling of wettability effects: Journal of Petroleum Science and Engineering, 39(2), 177 - 199.
[14] Shi, Y., and Zhang Y. W., 2008, Simulation of random packing of spherical particles with different size distributions: Applied Physics A: Materials Science and Processing, 92(3), 621 - 626.
[15] Yao, J., Zhao X. C., Yi, Y. J., and Tao, J., 2007, Analysis methods for reservoir rock's microstructure: Journal of China University of Petroleum (Edition of Natural Science) (in Chinese), 31(1), 80 - 86.
[16] Yeong, C. L. Y., and Torquato S., 1998a, Reconstructing random media: Physical Review E, 57(1), 495 - 506.
[17] Yeong, C. L. Y., and Torquato S., 1998b, Reconstructing random media. II. Three-dimensional media from two-dimensional cuts: Physical Review E, 58(1), 224 - 233.
[18] Zhao, X. C., Yao, J., Tao, J., and Yi, N. J., 2007a, A method of constructing digital core by simulated annealing algorithm: Applied Mathematics A, Journal of Chinese Universities (in Chinese), 22(2), 127 - 133.
[19] Zhao, X. C., Yao, J., and Yi, Y. J., 2007b, A new stochastic method of reconstructing porous media: Transport in Porous Media, 69(1), 1 - 11.
[20] Zhu, Y. H., Tao, G., and Fang, W., 2007, Application of image processing technique in digital core modeling: Journal of Oil and Gas Technology (in Chinese), 29(5), 54 - 57.
[21] Zhu, Y. H., and Tao, G., 2007, Sequential indicator simulation technique and its application in 3D digital core modeling: Well Logging Technology (in Chinese), 31(2), 112 - 115.
[1] 张文辉,符力耘,张艳,金维浚. 利用三维数字岩心计算龙马溪组页岩等效弹性参数[J]. 应用地球物理, 2016, 13(2): 364-374.
[2] 朱伟,单蕊. 三维数字岩心透射超声波模拟与速度精度分析[J]. 应用地球物理, 2016, 13(2): 375-381.
[3] 岳文正, 陶果, 柴细元, 崔冬子. 泥质含量及其分布形式对岩电关系影响的数字岩心仿真[J]. 应用地球物理, 2011, 8(1): 11-17.
[4] 刘学锋, 孙建孟, 王海涛. 基于数字岩心的岩石电性微观数值模拟[J]. 应用地球物理, 2009, 6(1): 1-7.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司