APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2009, Vol. 6 Issue (1): 77-83    DOI: 10.1007/s11770-009-0010-5
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
大地电磁三维快速松弛反演并行算法研究
林昌洪1,2,谭捍东1,2,佟拓1,2
1. 中国地质大学地质过程与矿产资源国家重点实验室,北京 100083
2. 中国地质大学(北京)地球物理与信息技术学院,北京 100083
Parallel rapid relaxation inversion of 3D magnetotelluric data
Lin Changhong1,2, Tan Handong1,2, and Tong Tuo1,2
1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, 100083, China.
2. School of Geophysics and Information Technology, China University of Geosciences, Beijing, 100083, China.
 全文: PDF (630 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为了进一步提高大地电磁三维快速松弛反演的计算效率,在深入分析大地电磁三维快速松弛反演算法的基础上,结合MPI自身的优越性,确定了并行计算的思路,实现了三维快速松弛反演的并行计算。通过理论模型合成数据和实测数据对实现的三维快速松弛反演并行程序进行了试算,分析对比了在多种情况下程序的执行效率。测试结果表明,所实现的三维快速松弛反演并行程序运行结果正确,效率提高明显。此成果在普通微机上实现,推动了大地电磁三维反演技术的实用化,可为其它地球物理三维正反演研究所借鉴。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
林昌洪
谭捍东
佟拓
关键词大地电磁   MPI并行程序设计   三维快速松弛反演   并行算法     
Abstract: We implement a parallel algorithm with the advantage of MPI (Message Passing Interface) to speed up the rapid relaxation inversion for 3D magnetotelluric data. We test the parallel rapid relaxation algorithm with synthetic and real data. The execution efficiency of the algorithm for several different situations is also compared. The results indicate that the parallel rapid relaxation algorithm for 3D magnetotelluric inversion is effective. This parallel algorithm implemented on a common PC promotes the practical application of 3D magnetotelluric inversion and can be suitable for the other geophysical 3D modeling and inversion.
Key wordsMagnetotelluric   MPI   3D   rapid relaxation inversion   parallel algorithm   
收稿日期: 2008-11-11;
基金资助:

本研究由国家自然科学基金项目(40774029,40374024)、国家高技术研究发展计划(863计划)(2007AA09Z310)和教育部新世纪优秀人才计划联合资助。

引用本文:   
林昌洪,谭捍东,佟拓. 大地电磁三维快速松弛反演并行算法研究[J]. 应用地球物理, 2009, 6(1): 77-83.
LIN Chang-Hong,TAN Han-Dong,TONG Tuo. Parallel rapid relaxation inversion of 3D magnetotelluric data[J]. APPLIED GEOPHYSICS, 2009, 6(1): 77-83.
 
[1] Avdeev, D. B., and Avdeeva, A. D., 2006, A rigorous three-dimensional magnetotelluric inversion: Progress in Electromagnetics Research, 62, 41 - 48.
[2] Du, Z. H., 2001, High-powered computing parallel programming technique-MPI parallel program design: Tsinghua University Press, Beijing.
[3] Hu, Z. Z., Hu, X. Y., and He, Z. X., 2006, Pseudo-three-dimensional magnetotelluric inversion using nonlinear conjugate gradients: Chinese Journal of Geophysics (in Chinese), 49(4), 1226 - 1234.
[4] Lin, C. H., Tan, H. D., and Tong, T., 2008, Three-dimensional conjugate gradient inversion of magnetotelluric sounding data: Applied Geophysics, 5(4), 314 - 321.
[5] Mackie, R. L., and Madden, T. R., 1993, Three-dimensional magnetotelluric inversion using conjugate gradients: Geophys. J. Int., 115, 215 - 229.
[6] Newman, G. A., and Alumbaugh, D. L., 1997a, Three-dimensional massively parallel electromagnetotelluric inversion - I. Theory: Geophys. J. Int., 128, 345 - 354.
[7] Newman, G. A., and Alumbaugh, D. L., 1997b, Three-dimensional massively parallel electromagnetotelluric inversion - II. Analysis of a crosswell electromagnetic experiment: Geophys. J. Int., 128, 355 - 363.
[8] Newman, G. A., and Alumbaugh, D. L., 2000, Three-dimensional magnetotelluric inversion using non-linear conjugate gradients: Geophys. J. Int., 140, 410 - 424.
[9] Siripunvaraporn, W., Egbert, G., Lenbury, Y., and Uyeshima, M., 2005, Three-dimensional magnetotelluric inversion: data-space method: Physics of The Earth and Planetary Interiors, 150(1 - 3), 3 - 14.
[10] Smith, J. T., and Booker, J. R., 1991, Rapid inversion of two- and three-dimensional magnetotelluric data: J. Geophys. Res, 96, 3905 - 3922.
[11] Spichak, V., and Popova, 2000, Artificial neural network inversion of magnetotelluric data in terms of three-dimensional earth macroparameters: Geophys. J. Int., 142, 15 - 26.
[12] Takasugi, S., Tanaka, K. K., Kawakami, N., and Muramatsu, S., 1992, High spatial resolution of the resistivity structure revealed by a dense network MT measurement - A case study in the Minamikayabe area, Hokkaido, Japan: Journal of Geomagnetism and Geoelectricity, 44, 289 - 308.
[13] Tan, H. D., Yu, Q. F., Booker, J., and Wei, W. B., 2003a, Magnetotelluric three-dimensional modeling using the staggered-grid finite difference method: Chinese Journal of Geophysics (in Chinese), 46(5), 705 - 711.
[14] Tan, H. D., Yu, Q. F., Booker, J., and Wei, W. B., 2003b, Three-dimensional rapid relaxation inversion for the magmetotelluric method: Chinese Journal of Geophysics (in Chinese), 46(6), 850 - 854.
[15] Tan, H. D., Tong, T., and Lin, C. H., 2006, The parallel 3D magnetotelluric forward modeling algorithm: Applied Geophysics, 3(4), 197 - 202.
[16] Zhdanov, M., and Tolstaya, E., 2004, Minimum support nonlinear parameterization in the solution of a 3D magnetotelluric inverse problem: Inverse Problems, 20(3), 937 - 952.
[1] 曹晓月,殷长春,张博,黄鑫,刘云鹤,蔡晶. 基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究[J]. 应用地球物理, 2018, 15(3-4): 556-565.
[2] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[3] 王堃鹏,谭捍东,王涛. 基于交叉梯度约束的CSAMT和磁法二维联合反演[J]. 应用地球物理, 2017, 14(2): 279-290.
[4] 李俊杰, 严家斌, 皇祥宇. 无网格法精度分析及在电磁法二维正演中的应用[J]. 应用地球物理, 2015, 12(4): 503-515.
[5] 胡英才, 李桐林, 范翠松, 王大勇, 李建平. 基于矢量有限元法的三维张量CSAMT正演模拟[J]. 应用地球物理, 2015, 12(1): 35-46.
[6] 林昌洪, 谭捍东, 舒晴, 佟拓, 张玉玫. 稀疏测线大地电磁资料三维反演研究:合成算例[J]. 应用地球物理, 2012, 9(1): 9-18.
[7] Shireesha M. and Harinarayana T.. 大地电磁测深数据处理—4元素和6元素阻抗张量元素的比较研究[J]. 应用地球物理, 2011, 8(4): 285-292.
[8] 林昌洪, 谭捍东, 佟拓. 大地电磁全信息资料三维共轭梯度反演研究[J]. 应用地球物理, 2011, 8(1): 1-10.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司