APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2009, Vol. 6 Issue (1): 8-16    DOI: 10.1007/s11770-009-0007-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
HHT的滤波特性及在声波测井波列信号处理中的应用
王祝文,刘菁华,岳崇旺,李晓春,李长春
吉林大学地球探测科学与技术学院,长春 130026
The filtering characteristics of HHT and its application in acoustic log waveform signal processing
Wang Zhu-Wen1, Liu Jing-Hua1, Yue Chong-Wang1, Li Xiao-Chun1, and Li Chang-Chun1
1. GeoExploration College of Science and Technology, Jilin University, Changchun 130026, China.
 全文: PDF (801 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 阵列声波信号是典型的非线性、非平稳信号,Hilbert-Huang变换(HHT)是处理非平稳信号的一种比较新的时频分析方法。通过对信号进行经验模态分解(EMD)和对瞬时频率的求解,可以获得声波信号的时-频谱。任何非平稳的信号都可以分解为有限数目并且具有一定物理意义的固有模态函数。EMD方法可以理解为以声波信号极值特征尺度为度量的时频滤波过程。滤波器充分保留了声波信号本身的非线性和非平稳特征,在声波信号的滤波和去噪中具有很大的优势。文中介绍了HHT时频滤波的实现过程,并以应用该方法处理声波测井波列的实例,说明了该方法的有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王祝文
刘菁华
岳崇旺
李晓春
李长春
关键词HHT   经验模态分解   固有模态函数   时频滤波     
Abstract: Array acoustic logging plays an important role in formation evaluation. Its data is a non-linear and non-stationary signal and array acoustic logging signals have time-varying spectrum characteristics. Traditional filtering methods are inadequate. We introduce a Hilbert-Huang transform (HHT) which makes full preservation of the non-linear and non-stationary characteristics and has great advantages in the acoustic signal filtering. Using the empirical mode decomposition (EMD) method, the acoustic log waveforms can be decomposed into a finite and often small number of intrinsic mode functions (IMF). The results of applying HHT to real array acoustic logging signal filtering and de-noising are presented to illustrate the efficiency and power of this new method.
Key wordsHilbert-Huang transform   empirical mode decomposition   intrinsic mode functions   time-frequency filter   
收稿日期: 2008-07-27;
基金资助:

本研究由国家自然科学基金项目(编号:40874059)和“九五”国家重大科学工程项目(计高技[1999]1423号)资助。

引用本文:   
王祝文,刘菁华,岳崇旺等. HHT的滤波特性及在声波测井波列信号处理中的应用[J]. 应用地球物理, 2009, 6(1): 8-16.
WANG Zhu-Wen,LIU Jing-Hua,YUE Chong-Wang et al. The filtering characteristics of HHT and its application in acoustic log waveform signal processing[J]. APPLIED GEOPHYSICS, 2009, 6(1): 8-16.
 
[1] Balocchi, R., Menicucci, D., Varanini, M., 2003, Empirical mode decomposition to approach the problem of detecting sources from a reduced number of mixtures: EMBS, Proceedings of the 25th Annual International Conference of the IEEE, 3, 2443 - 2446.
[2] Champency, C. D., 1987, A handbook of Fourier theorems: Cambridge University Press, London.
[3] Chen, B. X, and Zhang, Y., 2002, Full wave sonic logging data processing technique and its applications: Well Logging Technology (in Chinese), 26(5), 369 - 372.
[4] Chu, Z. H., 1985, Principle of acoustic logging: Petroleum Industry Press, Beijing.
[5] Cohen, L., 1995, Time-frequency analysis: Prentice-Hall, Englewood Cliffs, New Jersey .
[6] Daubechies, I., 1990, The wavelet transform, time-frequency localization and signal analysis: IEEE Transactions on Information Theory, 36(5), 961 - 1005.
[7] Deng, Y.J., Wang, W., Qian, C. C., Wang, Z., Dai, D.J., 2001, EMD method and the boundary-problem-processing in Hilbert transform: Chinese Science Bulletin, 41(3), 257 - 263.
[8] Donnbo, D., 1995, Denoising by soft-thresholding: IEEE Trans on IT, 4(3), 613 - 625.
[9] Fan, J. R., 2003, Application and research of EMD analysis in fault diagnosis systems: Master Thesis of Wuhan University of Technology, Wuhan, China.
[10] Flandrin, P., Rilling, G., and Goncalv`es, P., 2004, Empirical mode decomposition as a filter bank: IEEE Signal Processing Letters, 11(2), 112 - 124.
[11] Huang, N. E., 1997, Computer implemented empirical mode decomposition method, apparatus and article of manufacture: US Patent 5, 983, 162, June - 10 - 1997.
[12] Huang, N. E., Shen, Z., and Long, S. R., Wu, M.C., Shih,H.H., Zheng, Q., Yen, N. C., Tung, C.C., and Liu, H.H., 1998, The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis: Proc. R. Soc. Lond. A, 454, 903 - 995.
[13] Huang, N. E., Shen, Z., Long, S. R., 1999, A new view of nonlinear water waves: The Hilbert spectrum: Annual Review of Fluid Mechanics, 31, 417 - 457.
[14] Huang, N. E., Long, S. R., and Shen, Z., 1996, The mechanism for frequency downshift in nonlinear wave evolution: Advances in Applied Mechanics, 32, 59 - 111.
[15] Li, C. W., Yu, C. H., and Wang, W. X., 1997, Full wavetrain processing of array acoustic logging data and its application: Well Logging Technology (in Chinese), 21(1), 1 - 8.
[16] Li, W. Y., Li, Y. S. , Wang, Z. H., He, Z.B., Lu, H.P., 1999, Processing DSI logging data with STC method: Journal of Jianghan Petroleum Institute, 21(4), 36 - 39.
[17] Liu, T., Su, T. M., and Sun, J., 2005, Study on acoustic diversity attenuation properties of rock and foreground of applying in engineering: Progress in Geophysics (in Chinese), 20(3), 822 - 827.
[18] Loh, G. H., 2001, Application of the empirical mode decomposition-Hilbert spectrum method to identify near-fault ground-motion characteristics and structural responses: Bulletin of the Seismological Society of America, 91(5), 1339 - 1357.
[19] Mallat, S., 1989, A theory for multiresolution signal decomposition: The wavelet representation: IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674 - 93.
[20] Shekel, J., 1953, ‘Instantaneous’ frequency: Proceedings of the Institute of Radio Engineers, 41, 548.
[21] Schlurmann, T., 2002, Spectral analysis of nonlinear water waves based on the Hilbert-Huang transformation: Journal of Offshore Mechanics and Artic Engineering, 124, 22 - 27.
[22] Tao, G., Zou, H., 2000, A study on methods for processing and interpretation of modern array sonic logging data: Petroleum Exploration and Development, 27(2), 76 - 78.
[23] Wang, Z. H., and Wang, Z. W., 2004, The development and current situation of acoustic logging: in Zhang, Z. J., Liu, Z.K., Han, L.G., Yang. B.J., Niu, B.H., and Wang, J.M., Eds. The New Developments in Seismic Research, Petroleum Industry Press, Beijing, China.
[24] Wang, Z. W., Liu, J. H., and Nie, C. Y., 2007a, Time-frequency analysis of array acoustic logging signal based on Choi-Williams energy distribution: Progress in Geophysics (in Chinese), 22(5), 1481 - 1486.
[25] Wang, Z. W., Liu, J. H., and Nie, C. Y., 2007b, The reassignment method based on time-frequency analysis and its application in the array acoustic logging data processing: Journal of Jilin University (Earth Science Edition), 37(5), 1042 - 1046.
[26] Wang, Z. W., Liu, J. H., and Nie, C. Y., 2008a, Time-frequency analysis of array acoustic logging waveform signal based on Hilbert-Huang transform: Earth Science Journal of China University of Geosciences, 33(3), 387 - 392.
[27] Wang, Z. W., Liu, J. H., and Nie, C. Y., 2008b, Application of Hilbert-Huang transform in extracting dynamic properties of array acoustic signals: Progress in Geophysics (in Chinese), 23(2), 450 - 455.
[28] Wang, Z. W., Liu, J. H., and Nie, C. Y., 2008c, Array acoustic logging signal analysis based on the local correlation energy: Journal of Jilin University (Earth Science Edition), 38(2), 341 - 346.
[29] Xiong, X. J., Guo, B. H., Hu, X. M., Liu, J.J., 2002, Application and discussion of empirical mode decomposition method and Hilbert spectral analysis method: Advances in Marine Science, 20(2), 12 - 21.
[30] Zhang, X. T., Wang, Z. W., Yuan, J. H., 2008, Using time-frequency analysis to identify oil and water layers in array acoustic logging: Lithologic Reservoirs, 20(1), 101 - 104.
[31] Zhang, B. X., and Wang, K. X., 1998, Status quo and development of the acoustic multipole logging in anisotropic formation, Progress in Geophysics (in Chinese), 13(2), 1 - 14.
[32] Zhu, L. F., and Shen, J.G., 2006, The new method of processing the slowness of P and S-wave from waveforms of array sonic logging: Progress in Geophysics (in Chinese), 21(2), 483 - 488.
[1] 甘叔玮, 王守东, 陈阳康, 陈江龙, 钟巍, 张成林. 基于相似度权重算子和f − x域经验模态分解的随机噪声衰减方法[J]. 应用地球物理, 2016, 13(1): 127-134.
[2] 马彦彦, 李国发, 王峣钧, 周辉, 张保江. F-X域复数经验模态分解去噪方法[J]. 应用地球物理, 2015, 12(1): 47-54.
[3] 蔡涵鹏, 贺振华, 黄德济. 基于混合时频分析技术的地震数据噪声压制[J]. 应用地球物理, 2011, 8(4): 319-327.
[4] 黄亚平, 耿建华, 钟广法, 郭彤楼, 蒲勇, 丁孔芸, 麻纪强. 基于Hilbert-Huang变换的地震瞬时属性提取方法及应用[J]. 应用地球物理, 2011, 8(2): 125-133.
[5] 文晓涛, 贺振华, 黄德济. 基于EMD与关联维的储层识别[J]. 应用地球物理, 2009, 6(1): 70-76.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司