APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2009, Vol. 6 Issue (1): 1-7    DOI: 10.1007/s11770-009-0001-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
基于数字岩心的岩石电性微观数值模拟
刘学锋,孙建孟,王海涛
中国石油大学地球资源与信息学院,山东东营 257061
Numerical simulation of rock electrical properties based on digital cores
Liu Xue-Feng1, Sun Jian-Meng1, and Wang Hai-Tao1
1. College of Geo-resource and Information, China University of Petroleum, Dongying 257061, China.
 全文: PDF (623 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 基于数字岩心的岩石物理数值模拟,本文利用X射线CT获取反映岩心微观结构的三维数字岩心,利用数学形态学中的开运算模拟了岩石的油驱水排驱过程中,不同含水饱和度下油和地层水在孔隙空间中的分布。利用有限元方法计算了岩石电阻率,进而得到岩石地层因素和电阻率指数,并考查了岩石润湿性对岩石电阻率指数的影响。数值模拟结果表明:基于数字岩心的水湿岩石地层因素和电阻率指数数值模拟结果与实验结果一致,拓展了岩石电阻率实验的能力;岩石润湿性对岩石电性有重要影响,在相同含水饱和度下,油湿岩石电阻率高于水湿岩石电阻率,油湿岩石饱和度指数远大于水湿岩石饱和度指数。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘学锋
孙建孟
王海涛
关键词数字岩心   电阻率   数学形态学   润湿性   地层因素   电阻率指数     
Abstract: In this paper, we obtained three dimensional digital cores using X-ray CT to describe the rock microstructure and applied the open morphology algorithm to simulate oil and formation water distribution in the pore space at different water saturations during the oil-displacing water flood process. The resistivity, formation factor, and resistivity index of rocks were calculated using the finite element method (FEM) and we studied the effect of rock wettability on electrical properties. The numerical simulation results indicate that the simulated formation factor and resistivity index of the water wet rock agrees well with experiments over the whole range of water saturation and extends the traditional resistivity experiment. The rock wettablilty has a large influence on the rock resistivity index. The resistivity and saturation exponent of oil wet rock are obviously larger than three of water wet rock.
Key wordsdigital core   morphology   wettability   resistivity index   
收稿日期: 2008-08-31;
基金资助:

本研究由国家自然科学基金项目(40574030)和中石油测井应用基础研究项目(06A30102)资助。

引用本文:   
刘学锋,孙建孟,王海涛. 基于数字岩心的岩石电性微观数值模拟[J]. 应用地球物理, 2009, 6(1): 1-7.
LIU Xue-Feng,SUN Jian-Meng,WANG Hai-Tao. Numerical simulation of rock electrical properties based on digital cores[J]. APPLIED GEOPHYSICS, 2009, 6(1): 1-7.
 
[1] Ruan, Q. Q., 2001, Digital image processing: Electronics Industry Publication (in Chinese), Beijing, China, 429 - 456.
[2] Sweeney, S. A., and Jennings, H. Y., 1960, Effect of wettability on the electrical resistivity of carbonate rock from a petroleum reservoir: J. Phys. Chem., 64, 551-553.
[3] Tao, G., Yue, W. Z., Xie, R.H., and Zhu, Y. H., 2005, A new method for theoretical modeling and numerical experiments on petrophysical studies: Progress of Geophysics (in Chinese), 20(1), 4 - 11.
[4] Tao, G., Yue, W. Z., Li, B. T., and Fang, C. L., 2006, Electrical transport properties of fluid saturated porous rocks by 2D lattice gas automata: SPE Reservoir Evaluation, 9(3), 274 - 279.
[5] Arns, C. H., 2002, The influence of morphology on physical properties of reservoir rocks: PhD Thesis, The University of New South Wales.
[6] Wang, K. W., Sun, J. M., Guan, J. T., and Su, Y. D., 2005, Percolation network modeling of electrical properties of complex reservoir rock: Applied Geophysics, 2(4), 223 - 229.
[7] Dvorkin, J., Walls, J., Tutuncu, A., Manika, P., Amos, N., and Ali, M., 2003, Rock property determination using digital rock physics: 73rd Ann. Intertan. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1660 - 1663.
[8] Fatt, I., 1956, The network model of porous media III. Dynamic properties of networks with tube radius distribution: Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers, 207, 144 - 181.
[9] Fredrich, J. T., Greaves, K. H., and Martin, J. W., 1993, Pore geometry and transport properties of Fontainebleau sandstone: International Journal of Rock Mechanics and Mining Sciences, 30(7), 691 - 697.
[10] Wang, K. W., and Li, N., 2008, Numerical simulation of rock pore-throat structure effects on NMR T2 distribution: Applied Geophysics, 5(2), 86 - 91.
[11] Hilpert, M. and Miller, C. T., 2001, Pore-morphology-based simulation of drainage in totally wetting porous media: Advances in Water Resources, 24(3 - 4),?243 - 255.
[12] Yue, W. Z., Tao, G., and Zhu, K. Q., 2004a, Simulation of electrical properties of rock saturated with multi-phase fluids using lattice gas automation: Chinese J. Geophys. (in Chinese), 47(5), 905 - 910.
[13] Knackstedt, M. A., Arns, C. H., and Sheppard, A. P., 2007, Archie’s exponents in complex lithologies derived from 3D digital core analysis: 48th SPWLA Annual Logging Symposium, paper UU.
[14] Yue, W. Z., Tao, G., and Zhu, K. Q., 2004b, Investigation of resistivity of saturated porous media with lattice boltzmann method: Chinese Physics Letters, 21(10), 2059 - 2062.
[15] Yue, W. Z., Tao, G., and Zhu, K. Q., 2005, Simulation of electrical transport properties in oil-water saturated porous media with 2-D lattice gas automata: Chinese J. Geophys. (in Chinese), 48(1), 189 - 195.
[16] Xiang, Y., Xiang, D., Yang, Y. C., Zhang, C. J., and Liu, C. C., 1999, Study of gas recovery and water film thickness in water drive for tight sandstone gas reservoir: Journal of Chengdu University of Technology (Science & Technology Edition) (in Chinese), 26(4), 389 - 391.
[17] Rosenberg, E., Lynch, J., Guéroult, P., Bisiaux, M., and Ferreira, De P. R., 1999, High resolution 3D reconstructions of rocks and composites: Oil & Gas Science and Technology - Review, 54(4), 497 - 511.
[18] Ruan, Q. Q., 2001, Digital image processing: Electronics Industry Publication (in Chinese), Beijing, China, 429 - 456.
[19] Sweeney, S. A., and Jennings, H. Y., 1960, Effect of wettability on the electrical resistivity of carbonate rock from a petroleum reservoir: J. Phys. Chem., 64, 551-553.
[20] Tao, G., Yue, W. Z., Xie, R.H., and Zhu, Y. H., 2005, A new method for theoretical modeling and numerical experiments on petrophysical studies: Progress of Geophysics (in Chinese), 20(1), 4 - 11.
[21] Tao, G., Yue, W. Z., Li, B. T., and Fang, C. L., 2006, Electrical transport properties of fluid saturated porous rocks by 2D lattice gas automata: SPE Reservoir Evaluation, 9(3), 274 - 279.
[22] Wang, K. W., Sun, J. M., Guan, J. T., and Su, Y. D., 2005, Percolation network modeling of electrical properties of complex reservoir rock: Applied Geophysics, 2(4), 223 - 229.
[23] Wang, K. W., and Li, N., 2008, Numerical simulation of rock pore-throat structure effects on NMR T2 distribution: Applied Geophysics, 5(2), 86 - 91.
[24] Yue, W. Z., Tao, G., and Zhu, K. Q., 2004a, Simulation of electrical properties of rock saturated with multi-phase fluids using lattice gas automation: Chinese J. Geophys. (in Chinese), 47(5), 905 - 910.
[25] Yue, W. Z., Tao, G., and Zhu, K. Q., 2004b, Investigation of resistivity of saturated porous media with lattice boltzmann method: Chinese Physics Letters, 21(10), 2059 - 2062.
[26] Yue, W. Z., Tao, G., and Zhu, K. Q., 2005, Simulation of electrical transport properties in oil-water saturated porous media with 2-D lattice gas automata: Chinese J. Geophys. (in Chinese), 48(1), 189 - 195.
[27] Xiang, Y., Xiang, D., Yang, Y. C., Zhang, C. J., and Liu, C. C., 1999, Study of gas recovery and water film thickness in water drive for tight sandstone gas reservoir: Journal of Chengdu University of Technology (Science & Technology Edition) (in Chinese), 26(4), 389 - 391.
[1] 郭志华,宋延杰,王超,唐晓敏. 含黄铁矿泥质砂岩电阻率频散规律实验研究与校正方法*[J]. 应用地球物理, 2019, 16(1): 50-60.
[2] 康正明,柯式镇,李新,米金泰,倪卫宁,李铭宇. 随钻多模式电阻率成像测井仪响应的三维有限元数值模拟[J]. 应用地球物理, 2018, 15(3-4): 401-412.
[3] 杨海燕,李锋平,Chen Shen-En,岳建华,郭福生,陈晓,张华. 圆锥型场源瞬变电磁法测量数据反演[J]. 应用地球物理, 2018, 15(3-4): 545-555.
[4] 郭志华,宋延杰,唐晓敏,王超. 基于差分方程和通用阿尔奇方程的含黄铁矿混合泥质砂岩电阻率模型[J]. 应用地球物理, 2018, 15(2): 208-221.
[5] 严良俊,陈孝雄,唐浩,谢兴兵,周磊,王中兴,胡文宝. 页岩压裂过程的连续时域电磁法动态监测试验[J]. 应用地球物理, 2018, 15(1): 26-34.
[6] 胡松,李军,郭洪波,王昌学. 水平井随钻电磁波测井与双侧向测井响应差异及其解释应用[J]. 应用地球物理, 2017, 14(3): 351-362.
[7] 杨学立,李博,彭传圣,杨洋. 广域电磁法在我国南方海相页岩气勘探中的应用[J]. 应用地球物理, 2017, 14(3): 441-448.
[8] 陈辉,邓居智,尹敏,殷长春,汤文武. 直流电阻率法三维正演的聚集代数多重网格算法研究[J]. 应用地球物理, 2017, 14(1): 154-164.
[9] 杨海燕,李锋平,岳建华,郭福生,刘旭华,张华. 瞬变电磁法圆锥型场源特征与电感效应[J]. 应用地球物理, 2017, 14(1): 165-174.
[10] 白泽,谭茂金,张福莱. 不同激励源井地电位成像技术三维正反演方法研究[J]. 应用地球物理, 2016, 13(3): 437-448.
[11] 张钱江,戴世坤,陈龙伟,强建科,李昆,赵东东. 基于网格加密-收缩的2.5D直流电法有限元模拟[J]. 应用地球物理, 2016, 13(2): 257-266.
[12] 张文辉,符力耘,张艳,金维浚. 利用三维数字岩心计算龙马溪组页岩等效弹性参数[J]. 应用地球物理, 2016, 13(2): 364-374.
[13] 朱伟,单蕊. 三维数字岩心透射超声波模拟与速度精度分析[J]. 应用地球物理, 2016, 13(2): 375-381.
[14] 江沸菠,戴前伟,董莉. 基于剪枝贝叶斯神经网络的电阻率成像非线性反演[J]. 应用地球物理, 2016, 13(2): 267-278.
[15] 殷长春,张平,蔡晶. 海洋直流电阻率法各向异性正演模拟研究[J]. 应用地球物理, 2016, 13(2): 279-287.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司