APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (2): 210-221    DOI: 10.1007/s11770-013-0382-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于高光谱图像稀疏表示的彩色可视化模型
王立国,刘丹凤,赵亮
哈尔滨工程大学,黑龙江省哈尔滨市 150001
Sparse representation-based color visualization method for hyperspectral imaging
Wang Li-Guo1, Liu Dan-Feng1, and Zhao Liang1
1. Harbin Engineering University, College of Information and Communication Engineering, Heilongjiang Province Harbin, 150001, China.
 全文: PDF (1032 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 提出一种对整幅高光谱图像的稀疏表示结果进行直接显示的方法,图中不仅包含了稀疏表示中保留的光谱信息,还可显示整幅图像的空间信息。稀疏表示后,将字典中的各有效原子根据光谱特性选择颜色标签,之后根据稀疏系数进行混合颜色显示,此时的图像能够同时满足可分性及距离保持特性。针对局部地物时,提出的单像素混合阵列表示法及改进的裂片纹理技术能够直观且完整的显示出每个像元的具体组成情况,还能够根据所生成图像中的信息对原始HSI进行重建,进而提高数据的利用率。该模型不仅能够良好地显示地物的空间特性,同时能够显示稀疏系数的组成,同时单像素混合阵列表示法及裂片纹理技术弥补了混合像素彩色显示中颜色表达混乱的弊端。对真实地物数据进行实验,结果证明该模型产生的彩色图像具有良好的视觉效果及可分性,满足距离保持特性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王立国
刘丹凤
赵亮
关键词高光谱   可视化   稀疏表示   多层显示     
Abstract: In this paper, we designed a color visualization model for sparse representation of the whole hyperspectral image, in which, not only the spectral information in the sparse representation but also the spatial information of the whole image is retained. After the sparse representation, the color labels of the effective elements of the sparse coding dictionary are selected according to the sparse coefficient and then the mixed images are displayed. The generated images maintain spectral distance preservation and have good separability. For local ground objects, the proposed single-pixel mixed array and improved oriented sliver textures methods are integrated to display the specific composition of each pixel. This avoids the confusion of the color presentation in the mixed-pixel color display and can also be used to reconstruct the original hyperspectral data. Finally, the model effectiveness was proved using real data. This method is promising and can find use in many fields, such as energy exploration, environmental monitoring, disaster warning, and so on.
Key wordsHyperspectral   color visualization   sparse representation   multilayer visualization   
收稿日期: 2012-05-15;
基金资助:

本研究项目由国家自然科学基金(编号:61275010、61077079)、黑龙江省自然科学基金重点项目(编号:ZD201216)、中央高校基本科研业务业务专项资金(编号:HEUCF130820)联合资助。

引用本文:   
王立国,刘丹凤,赵亮. 基于高光谱图像稀疏表示的彩色可视化模型[J]. 应用地球物理, 2013, 10(2): 210-221.
WANG Li-Guo,LIU Dan-Feng,ZHAO Liang. Sparse representation-based color visualization method for hyperspectral imaging[J]. APPLIED GEOPHYSICS, 2013, 10(2): 210-221.
 
[1] Bioucas-Dias, J. M., and Figueiredo, M. A. T., 2010, Alternating direction algorithms for constrained sparse regression: application to hyperspectralunmixing: 2th Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Raykjavik, June 14 - 16, 1 - 4.
[2] Bioucas-Dias, J. M., Plaza, A., Dobigeon, N., Parente, M., Qian, D., Gader, P., and Chanussot, J., 2012, Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches: Selected Topics in Applied Earth Observations and Remote Sensing, 5(2), 354 - 379.
[3] Cai, S., Du, Q., and Moorhead, R., 2007, Hyperspectral imagery visualization using double layers: Transactions on Geoscience and Remote Sensing, 45(10), 3028 - 3036.
[4] Cai, S., Du, Q., and Moorhead, R., 2010, Feature-driven multilayer visualization for remotely sensed hyperspectral imagery: Transactions on Geoscience and Remote Sensing, 48(9), 3471 - 3481.
[5] Charles, A. S., Olshausen, B. A., and Rozell, C. J., 2011, Learning Sparse Codes for Hyperspectral Imagery: Journal of Selected Topics in Signal Processing, 5(5), 963 - 78.
[6] Coello, C. A. C., Pulido, G. T., and Lechuga, M. S., 2004, Handling multiple objectives with particle swarm optimization: Evolutionary Computation, 8(3), 256 - 279.
[7] Cui, M., Razddan, A., Hu, J., and Wonka, P., 2009, Interactive hyperspectral image visualization using convex optimization: Transactions on Geoscience and Remote Sensing, 47(6), 1673 - 1684.
[8] Du, Q., Raksuntorn, N., Cai, S., and Moorhead, R., 2008, Color display for hyperspectral imagery: Transactions on Geoscience and Remote Sensing, 46(6), 1858 - 1866.
[9] Erard, S., Drossart, P., and Piccioni, G., 2009, Multivariate analysis of visible and infrared thermal imaging spectrometer (virtis) venus express night side and limb observations: Journal of Geophysical Research, 114(E9), 1 - 20.
[10] Gomez, C., Borgne, H.L., Allemand, P., Delacourt, C., and Ledru, P., 2007, N-FindR method versus independent component analysis for litho-logical identification in hyperspectral imagery: International Journal of Remote Sensing, 28(23), 5315 - 5338.
[11] Greer, J.B., 2010, Sparse demixing: 16th Conference on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVI , Orlando, March 16 - 20, 76951O, 1 - 10.
[12] Greer, J.B.. 2012, Sparse Demixing of Hyperspectral Images: Transactions on Image Processing, 21(1), 219 - 228.
[13] Heinz, D. C., and Chang, C. I., 2001, Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery: Transactions on Geoscience and Remote Sensing., 39(3), 529 - 545.
[14] Iordache, M. D., Bioucas-Dias, J. M., and Plaza, A., 2011, Sparse Unmixing of Hyperspectral Data: Transactions on Geoscience and Remote Sensing, 9(6), 2014 - 2039.
[15] Jacobson, N. P., and Gupta, M. R., 2005, Design goals and solutions for display of hyperspectral images: Transactions on Geoscience and Remote Sensing, 43(11), 2684 - 2693.
[16] Kim, S. J., Koh, K., Lustig, M., Boyd, S., and Gorinevsky, D., 2007, An interior-point method for large scale l1-regularized least squares: Journal on Selected Topics in Signal Processing, 1(4), 606 - 617.
[17] Mignotte, M. A., 2010, multiresolution Markovian fusion model for the color visualization of hyperspectral images: Geoscience and Remote Sensing, 48(12), 4236 - 4247.
[18] Mignotte, M., 2012, A Bicriteria-Optimization-Approach-Based Dimensionality-Reduction Model for the Color Display of Hyperspectral Images: Geoscience and Remote Sensing, 50(2), 501 - 513.
[19] Osher, S., Mao, Y., Dong, B., and Yin, W., 2010, Fast linearized bregman iteration for compressive sensing and sparse denoising: Communications in Mathematical Sciences, 8(1), 93 - 111.
[20] Plaza, A., Benediktsson, J. A., Boardman, J. W., Brazile, J., Bruzzone, L., Camps-Valls, J., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M., Tilton, J. C., and Trianni, G., 2009, Recent advances in techniques for hyperspectral image processing: Remote Sensing of Environment, 113(1), S110 - S122,
[21] Rogge, D., Rivard, B., Zhang, J., and Feng, J., 2006, Iterative spectral unmixing for optimizing per-pixel endmember sets: Transactions on Geoscience and Remote Sensing, 44(12), 3725 - 3736.
[22] Sharma, G., and Trussell, H. J., 1997, Digital color imaging: Transactions on Image Processing, 6(7), 901 - 932.
[23] Shi, Z., Yang, S., and Jiang, Z., 2011, Hyperspectral target detection using regularized high-order matched filter: Optical Engineering, 50(5), 05720, 1 - 10.
[24] Themelis, K. E., Rontogiannis, A. A., and Koutroumbas, K. D., 2012, A Novel Hierarchical Bayesian Approach for Sparse Semisupervised Hyperspectral Unmixing: Transactions on Signal Processing, 60(2), 585 - 599.
[25] Weigle, C., Emigh, W. G., Liu, G., Taylor, R. M, James, T. E., and Christopher, G. H., 2000, Oriented texture slivers: A technique for local value estimation of multiple scalar fields: 26th Proceedings Graphics Interface, Montreal, Canada, May 15 - 17, 163 - 170.
[1] 李广,肖晓,汤井田,李晋,朱会杰,周聪,严发宝. 基于压缩感知重构算法和形态滤波的AMT近源干扰压制[J]. 应用地球物理, 2017, 14(4): 581-590.
[2] 王珺璐,林品荣,王萌,李荡,李建华. 类中梯装置三维大功率激电成像技术研究[J]. 应用地球物理, 2017, 14(2): 291-300.
[3] 徐小红, 屈光中, 张洋, 毕云云, 汪金菊. 基于形态成分分析地震信号二维域面波分离方法研究[J]. 应用地球物理, 2016, 13(1): 116-126.
[4] 杨京辉, 王立国, 钱晋希. 基于空间-光谱特征和稀疏表达的高光谱图像分类算法[J]. 应用地球物理, 2014, 11(4): 489-499.
[5] 陈向斌, 吕庆田, 严加永. 斑岩铜矿床及控矿构造的3D电性结构——以沙溪铜矿为例[J]. 应用地球物理, 2012, 9(3): 270-278.
[6] 蔡希玲, 刘学伟, 李虹, 吕英梅. 基于空间子集的地震数据分析方法[J]. 应用地球物理, 2009, 6(4): 354-362.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司