Abstract:
In this paper, we designed a color visualization model for sparse representation of the whole hyperspectral image, in which, not only the spectral information in the sparse representation but also the spatial information of the whole image is retained. After the sparse representation, the color labels of the effective elements of the sparse coding dictionary are selected according to the sparse coefficient and then the mixed images are displayed. The generated images maintain spectral distance preservation and have good separability. For local ground objects, the proposed single-pixel mixed array and improved oriented sliver textures methods are integrated to display the specific composition of each pixel. This avoids the confusion of the color presentation in the mixed-pixel color display and can also be used to reconstruct the original hyperspectral data. Finally, the model effectiveness was proved using real data. This method is promising and can find use in many fields, such as energy exploration, environmental monitoring, disaster warning, and so on.
WANG Li-Guo,LIU Dan-Feng,ZHAO Liang. Sparse representation-based color visualization method for hyperspectral imaging[J]. APPLIED GEOPHYSICS, 2013, 10(2): 210-221.
[1]
Bioucas-Dias, J. M., and Figueiredo, M. A. T., 2010, Alternating direction algorithms for constrained sparse regression: application to hyperspectralunmixing: 2th Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Raykjavik, June 14 - 16, 1 - 4.
[2]
Bioucas-Dias, J. M., Plaza, A., Dobigeon, N., Parente, M., Qian, D., Gader, P., and Chanussot, J., 2012, Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches: Selected Topics in Applied Earth Observations and Remote Sensing, 5(2), 354 - 379.
[3]
Cai, S., Du, Q., and Moorhead, R., 2007, Hyperspectral imagery visualization using double layers: Transactions on Geoscience and Remote Sensing, 45(10), 3028 - 3036.
[4]
Cai, S., Du, Q., and Moorhead, R., 2010, Feature-driven multilayer visualization for remotely sensed hyperspectral imagery: Transactions on Geoscience and Remote Sensing, 48(9), 3471 - 3481.
[5]
Charles, A. S., Olshausen, B. A., and Rozell, C. J., 2011, Learning Sparse Codes for Hyperspectral Imagery: Journal of Selected Topics in Signal Processing, 5(5), 963 - 78.
[6]
Coello, C. A. C., Pulido, G. T., and Lechuga, M. S., 2004, Handling multiple objectives with particle swarm optimization: Evolutionary Computation, 8(3), 256 - 279.
[7]
Cui, M., Razddan, A., Hu, J., and Wonka, P., 2009, Interactive hyperspectral image visualization using convex optimization: Transactions on Geoscience and Remote Sensing, 47(6), 1673 - 1684.
[8]
Du, Q., Raksuntorn, N., Cai, S., and Moorhead, R., 2008, Color display for hyperspectral imagery: Transactions on Geoscience and Remote Sensing, 46(6), 1858 - 1866.
[9]
Erard, S., Drossart, P., and Piccioni, G., 2009, Multivariate analysis of visible and infrared thermal imaging spectrometer (virtis) venus express night side and limb observations: Journal of Geophysical Research, 114(E9), 1 - 20.
[10]
Gomez, C., Borgne, H.L., Allemand, P., Delacourt, C., and Ledru, P., 2007, N-FindR method versus independent component analysis for litho-logical identification in hyperspectral imagery: International Journal of Remote Sensing, 28(23), 5315 - 5338.
[11]
Greer, J.B., 2010, Sparse demixing: 16th Conference on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVI , Orlando, March 16 - 20, 76951O, 1 - 10.
[12]
Greer, J.B.. 2012, Sparse Demixing of Hyperspectral Images: Transactions on Image Processing, 21(1), 219 - 228.
[13]
Heinz, D. C., and Chang, C. I., 2001, Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery: Transactions on Geoscience and Remote Sensing., 39(3), 529 - 545.
[14]
Iordache, M. D., Bioucas-Dias, J. M., and Plaza, A., 2011, Sparse Unmixing of Hyperspectral Data: Transactions on Geoscience and Remote Sensing, 9(6), 2014 - 2039.
[15]
Jacobson, N. P., and Gupta, M. R., 2005, Design goals and solutions for display of hyperspectral images: Transactions on Geoscience and Remote Sensing, 43(11), 2684 - 2693.
[16]
Kim, S. J., Koh, K., Lustig, M., Boyd, S., and Gorinevsky, D., 2007, An interior-point method for large scale l1-regularized least squares: Journal on Selected Topics in Signal Processing, 1(4), 606 - 617.
[17]
Mignotte, M. A., 2010, multiresolution Markovian fusion model for the color visualization of hyperspectral images: Geoscience and Remote Sensing, 48(12), 4236 - 4247.
[18]
Mignotte, M., 2012, A Bicriteria-Optimization-Approach-Based Dimensionality-Reduction Model for the Color Display of Hyperspectral Images: Geoscience and Remote Sensing, 50(2), 501 - 513.
[19]
Osher, S., Mao, Y., Dong, B., and Yin, W., 2010, Fast linearized bregman iteration for compressive sensing and sparse denoising: Communications in Mathematical Sciences, 8(1), 93 - 111.
[20]
Plaza, A., Benediktsson, J. A., Boardman, J. W., Brazile, J., Bruzzone, L., Camps-Valls, J., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M., Tilton, J. C., and Trianni, G., 2009, Recent advances in techniques for hyperspectral image processing: Remote Sensing of Environment, 113(1), S110 - S122,
[21]
Rogge, D., Rivard, B., Zhang, J., and Feng, J., 2006, Iterative spectral unmixing for optimizing per-pixel endmember sets: Transactions on Geoscience and Remote Sensing, 44(12), 3725 - 3736.
[22]
Sharma, G., and Trussell, H. J., 1997, Digital color imaging: Transactions on Image Processing, 6(7), 901 - 932.
Themelis, K. E., Rontogiannis, A. A., and Koutroumbas, K. D., 2012, A Novel Hierarchical Bayesian Approach for Sparse Semisupervised Hyperspectral Unmixing: Transactions on Signal Processing, 60(2), 585 - 599.
[25]
Weigle, C., Emigh, W. G., Liu, G., Taylor, R. M, James, T. E., and Christopher, G. H., 2000, Oriented texture slivers: A technique for local value estimation of multiple scalar fields: 26th Proceedings Graphics Interface, Montreal, Canada, May 15 - 17, 163 - 170.