APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2010, Vol. 7 Issue (1): 10-17    DOI: 10.1007/s11770-010-0009-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于频率域峰值属性的河道砂体定量预测及应用
孙鲁平,郑晓东,李劲松,首皓,李艳东
中国石油勘探开发研究院,北京 100083
Quantitative prediction and application of channel sand bodies based on seismic peak attributes in the frequency domain
Sun Lu-Ping1, Zheng Xiao-Dong1, ShouHao1, Li Jing-Song1, and Li Yan-Dong1
1. Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China.
 全文: PDF (3299 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 河道砂体是陆相含油气盆地最重要的储集类型之一,其边界识别和厚度定量预测是储层预测的热点难题。本文在总结现有方法技术的基础上,提出一种利用频率域峰值属性进行河道砂体边界识别和厚度定量预测的新方法。对典型河道薄砂体地震反射进行了正演模拟,构造了一种新的地震属性——峰值频率-振幅比,研究表明:峰值频率属性对地层厚度变化敏感,振幅属性对地层岩性变化敏感,两者比值突出河道砂体的边界,同时,借助峰值频率与薄层厚度间存在的定量关系进行薄砂体厚度计算。实际数据应用表明,地震峰值频率属性可以较好的刻画河道的平面展布特征;峰值频率-振幅比属性可以提高对河道砂体边界的识别能力;利用频率域地震属性进行砂体边界识别及厚度定量预测是可行的。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙鲁平
郑晓东
李劲松
首皓
李艳东
关键词河道砂体   峰值频率   峰值振幅   边界识别   定量预测     
Abstract: The boundary identification and quantitative thickness prediction of channel sand bodies are always difficult in seismic exploration. We present a new method for boundary identification and quantitative thickness prediction of channel sand bodies based on seismic peak attributes in the frequency domain. Using seismic forward modeling of a typical thin channel sand body, a new seismic attribute - the ratio of peak frequency to amplitude was constructed. Theoretical study demonstrated that seismic peak frequency is sensitive to the thickness of the channel sand bodies, while the amplitude attribute is sensitive to the strata lithology. The ratio of the two attributes can highlight the boundaries of the channel sand body. Moreover, the thickness of the thin channel sand bodies can be determined using the relationship between seismic peak frequency and thin layer thickness. Practical applications have demonstrated that the seismic peak frequency attribute can depict the horizontal distribution characteristics of channels very well. The ratio of peak frequency to amplitude attribute can improve the identification ability of channel sand body boundaries. Quantitative prediction and boundary identification of channel sand bodies with seismic peak attributes in the frequency domain are feasible.
Key wordschannel sand bodies   seismic peak frequency attribute   seismic peak amplitude attribute   boundary identification   quantitative prediction   
收稿日期: 2009-11-04;
基金资助:

本项研究由海相碳酸盐岩国家重大专项(2008ZX05000-004)和中国石油集团公司重大专项(2008E-0610-10)资助。

引用本文:   
孙鲁平,郑晓东,李劲松等. 基于频率域峰值属性的河道砂体定量预测及应用[J]. 应用地球物理, 2010, 7(1): 10-17.
SUN Lu-Ping,ZHENG Xiao-Dong,LI Jin-Song et al. Quantitative prediction and application of channel sand bodies based on seismic peak attributes in the frequency domain[J]. APPLIED GEOPHYSICS, 2010, 7(1): 10-17.
 
[1] Alamsyah, M. N., Marmosuwito, S., Sutjiningsih, W., and Marpaung, L. P., 2008, Seismic reservoir characterization of Indonesia’s Southwest Betara Field: The Leading Edge, 27(12), 1598 - 1607.
[2] Chung, H. M., and Lawton, D. C., 1995, Amplitude responses of thin beds: Sinusoidal approximation versus Ricker approximation: Geophysics, 60(3), 223 - 230.
[3] Cao, Q. R., Li, P., Sun, K. and Li, N., 2007, Using seismic attributes to identify channel sand body: Lithologic Reservoirs, 19(2), 93 - 96.
[4] Connolly, P., and Kemper, M., 2007, A simple, robust algorithm for seismic net pay estimation: The Leading Edge, 26(10), 1278 - 1282.
[5] Gridley, J. A., and Partyka, G. A., 1997, Processing and interpretational aspects of spectral decomposition: 67th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1055 - 1058.
[6] Ji, T. Z., Yang, Y. J., and Li, S. L., 2003, Application of coherence technology in the prediction of channel sand: Geophysical Prospecting for Petroleum, 42(3), 309 - 401.
[7] Long, J. D., 1995, Neural network BP modeling of the relation between thin bed thickness and amplitude and frequency: Oil Geophysical Prospecting, 30(6), 817 - 822.
[8] Partyka, G. A., Gridley, J. A., and Lopez, J. A., 1999, Interpretational aspects of spectral decomposition in reservoir characterization: The Leading Edge, 18(3), 353 - 360.
[9] Ricker, N., 1953, Wavelet contraction, wavelet expansion, and the control of seismic resolution: Geophysics, 18(4), 769 - 792.
[10] Sun, L. P., Zheng, X. D., Li, J. S., and Shou, H., 2009, Thin-bed thickness calculation formula and its approximation using peak frequency: Applied Geophysics, 6(3), 234 - 240.
[11] Wang, Z. J., and Huang, J. B., 2006, Identification of micro-fault and sand body by using coherence technique and 3-D visualization: Oil Geophysical Prospecting, 36(3), 378 - 381.
[12] Wang, J., Chen, Y. L., and Guo, B. X., 2005, 3-D visualization interpretation technique of channels: Oil Geophysical Prospecting, 40(6), 677 - 681.
[13] Widess, M. B., 1973, How thin is a thin bed?: Geophysics, 38, 1176 - 1180.
[14] Yao, F. C., and Gan, L. D., 2000, Application and restriction of seismic inversion: Petroleum Exploration and Development, 27(2), 53 - 56.
[15] Ye, T. R., Su, J. Y., and Liu, X. Y., 2008, Application of seismic frequency division interpretation technology in predicting continental sandstone reservoir in the west of Sichuan province: Geophysical Prospecting for Petroleum, 47(1), 72 - 76.
[16] Yin, X. Y., Zhang, K., and Zhang, G. Z., 2003, Application of joint time-frequency distribution and its attribution: Oil Geophysical Prospecting, 38(5), 522 - 526.
[17] Zhao, Z. Z., Zhao, X. Z., and Wang, Y. M., 2005, The theory and application of seismic reservoir prediction: Science Press, Beijing.
[18] Zhang, M. Z., Yin, X. Y., Yang, C. C., Tan, M. Y., and Song, Y. F., 2007, 3D seismic description for meander sediment micro-facies: Petroleum Geophysics, 5(1), 39 - 42.
[19] Zhuang, D. H., and Xiao, C. Y., 1996, Thin-bed thickness estimation using neural network: Oil Geophysical Prospecting, 31(3), 394 - 399.
[1] 曹呈浩,张宏兵,潘益鑫,滕新保. 中观局域流过渡频率及其与衰减峰值频率的联系研究[J]. 应用地球物理, 2016, 13(1): 156-165.
[2] 郭灿灿, 熊盛青, 薛典军, 王林飞. 基于垂向一阶导数与解析信号比值的欧拉反演方法[J]. 应用地球物理, 2014, 11(3): 331-339.
[3] 李丽丽, 韩立国, 黄大年. 空间归一化边界识别方法用于判断地质体的水平位置及深度[J]. 应用地球物理, 2014, 11(2): 149-157.
[4] 张军华, 刘振, 朱博华, 冯德永, 张明振, 张学芳. 河流相储层特征提取及识别技术研究——以老河口工区为例[J]. 应用地球物理, 2011, 8(3): 181-188.
[5] 孙鲁平, 郑晓东, 李劲松, 首皓, 李艳东. 基于频率域峰值属性的河道砂体定量预测及应用[J]. 应用地球物理, 2010, 6(1): 10-17.
[6] 孙鲁平, 郑晓东, 李劲松, 首皓. 基于峰值频率的薄层厚度计算公式及其近似[J]. 应用地球物理, 2009, 6(3): 234-240.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司