APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2010, Vol. 6 Issue (1): 18-30    DOI: 10.1007/s11770-010-0008-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
Kirchhoff型反偏移场稳相分析
孙建国1,2
1. 吉林大学 地球探测科学与技术学院,长春 130026
2. 国土资源部 应用地球物理综合解释理论开放实验室 波动理论与成像技术实验室,长春 130026
The stationary phase analysis of the Kirchhoff-type demigrated field
Sun Jian-Guo1,2
1. College for Geoexploration Science and Technology, Jilin University, Changchun 130026, China;
2. Laboratory for Integrated Geophysical Interpretation Theory of Ministry for Land and Resourc-Laboratory for Wave Theory and Imaging Technology, Changchun, 130026, China.
 全文: PDF (674 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在文献中,Kirchhoff型反偏移场的稳相分析主要是在下列两个条件下进行的:(1)等时面和目标反射面相切;(2)深度偏移像场信号的长度接近于零。对于与目标反射面不相切的等时面和长度远大于零的深度偏移像场子波,已有的结果将不再成立。为了在等时面和目标反射面不相切和深度偏移像场的子波长度远大于零的条件(一般条件)下对Kirchhoff型反偏移场进行稳相分析,我推导了出现在二维稳相分析公式中的诸因子的计算公式,并从中发现:(1)对于不同的等时面,距离差函数的稳相点具有不同的水平坐标;(2)Kirchhoff型真振幅反偏移的输出场由两部分(真振幅反偏移信号和振幅畸变因子)的乘积组成。由此得到如下两个结论:(1)一个给定的反偏移信号由多个深度偏移信号上的采样点组装而成,反偏移信号上的采样点个数等于对于这种组装有贡献的偏移信号的个数。(2)振幅畸变效应是Kirchhoff型反偏移中的固有效应,靠反偏移本身无法消除。如果一定要消除这种振幅畸变效应,必须对反偏移结果进行振幅校正。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙建国
关键词Kirchhoff型反偏移   稳相分析   稳相点坐标   2阶导数矩阵   振幅畸变     
Abstract: In the literature, stationary phase analysis of Kirchhoff-type demigrated fields is carried out mainly under the following two conditions: (1) The considered isochrone and the target reflector are tangential to each other; (2) The spatial duration of the wavelet of the depth-migrated image is short. For the isochrones that are not tangential to the target reflector and for the depth-migrated images that have a large spatial duration, the published stationary phase equation for the demigrated field will become invalid. For performing the stationary phase analysis of the Kirchhoff-type demigrated field under the conditions that the considered isochrone and the target reflector are not tangential to each other and that the spatial duration of the wavelet of the depth-migrated image is not short (the general conditions), I derive the formulas for the factors appearing in the stationary phase formula in two dimensions, from which I find that for different isochrones the horizontal coordinates of the stationary point of the depth difference function are different. Also, the equation for the Kirchhoff-type demigrated field consists of two parts. One is the true-amplitude demigrated signal and the other is the amplitude distortion factor. From these facts the following two conclusions can be drawn: (1) A demigrated signal is composed of many depth-migrated images and one depth-migrated image trace provides only one sample to the demigrated signal; and (2) The amplitude distortion effect is an effect inherent in the Kirchhoff-type demigration and cannot be eliminated during demigration. If this effect should be eliminated, one should do an amplitude correction after demigration.
Key wordsKirchhoff-type demigration')" href="#">

Kirchhoff-type demigration   stationary phase analysis   amplitude distortion   

收稿日期: 2009-11-25;
基金资助:

本研究由国家自然科学基金项目(40574052)资助。

引用本文:   
孙建国. Kirchhoff型反偏移场稳相分析[J]. 应用地球物理, 2010, 6(1): 18-30.
SUN Jian-Guo. The stationary phase analysis of the Kirchhoff-type demigrated field[J]. APPLIED GEOPHYSICS, 2010, 6(1): 18-30.
 
[1] Aki, K., and Richards, P. G., 1980, Quantitative seismology theory and methods, Volume 1:W. H. Freeman and Co.
[2] Ben-Menahem, A., and Beydoun, W. B., 1985, Range of validity of seismic ray and beam methods in general inhomogeneous media - I. General theory: Geophys. J. Roy. Astr. Soc., 82, 207 - 234.
[3] Bleistein, N., 1984, Mathematical methods for wave phenomena: Academic Press Inc.
[4] ervený, V., 2001, Seismic ray theory: Cambridge University Press.
[5] Claerbout, J. F., 1985, Imaging the earth’s interior: Blackwell Scientific Publications.
[6] Gardner, G. H. F., French, W. S., and Matzuk, T., 1974, Elements of migration and velocity analysis: Geophysics, 39, 811 - 825.
[7] Guo, S.J, Li, Z.C., Sun, X.D., Ye, Y.M., Teng, H.H., and Li, F., 2008, Post stack reverse time migration using a finite difference method based on triangular grid: Applied Geophysics, 5(2), 115 - 120.
[8] Hubral, P., Schleicher, J., and Tygel, M., 1996, A unified approach in 3-D seismic reflection imaging, Part I: Basic concepts: Geophysics, 61(3), 742 - 758.
[9] Jaramillo, H., Schleicher, J., and Tygel, M., 1998, Discussion to “A unified approach to 3-D seismic reflection imaging, Part II: Theory” (M. Tygel, J. Schleicher, and P. Hubral, Geophysics, 61, 759 - 775): Geophysics, 63, 670 - 673.
[10] Jaramillo, H., and Bleistein, N., 1999, The link of Kirchhoff migration and demigration to Kirchhoff and Born modeling: Geophysics, 64, 1793 - 1805.
[11] Liu, G.F., Liu, H., Li, B., and Meng, X.H., 2009, Getting pre-stack time migration travel times from the single square root operator: Applied Geophysics, 6(2), 129 - 137.
[12] Luneburg, R. K., 1964, Mathematical theory of optics: University of California Press.
[13] Kravtsov, Yu. A., and Orlov, Yu. I., 1990, Geometrical optics of inhomogeneous media: Springer-Verlag.
[14] —1993, Caustics, catastrophes, and wave fields: Springer-Verlag.
[15] Santos, L. T., Schleicher, J., Tygel, M., and Hubral, P., 2000, Seismic modeling by demigration: Geophysics, 65, 1281 - 1289.
[16] Schleicher, J., Tygel, M., and Hubral, P., 1993, 3-D true-amplitude finite-offset migration: Geophysics, 58(8), 1112 - 1126.
[17] Stamnes, J. J., 1986, Waves in focal region: Adam Hilgr.
[18] Sun, J.G., 1995, 3-D crosswell transmissions: Paraxial ray solutions and reciprocity paradox: Geophysics, 60(3), 810 - 820.
[19] Sun, J.G., 1996, The relationship between the first Fresnel zone and the normalized geometrical spreading factor: Geophysical Prospecting, 44, 351-374.
[20] Sun. J.G., 2000, Limited-aperture migration: Geophysics, 65(4), 584 - 595.
[21] Sun, J.G., 2002a, On some problems in 3-D isochrone-stack demigration: Journal of Jilin University, Earth Science Edition, 32(3), 273 - 278 (in Chinese).
[22] Sun, J.G., 2002b, Kirchhoff-type true-amplitude migration and demigration: Progress in Exploration Geophysics, 6(6), 1 - 5 (in Chinese).
[23] Sun, J.G., 2004, True-amplitude weight functions in 3D limited-aperture migration revisited: Geophysics, 69(4), 1025 - 1036.
[24] Tygel, M., Schleicher, J., and Hubral, P., 1994, Pulse distortion in depth migration: Geophysics, 59(10), 1561 - 1569.
[25] Tygel, M., Schleicher, J., and Hubral, P., 1995, Dualities involving reflectors and reflection-time surfaces: Journal of Seismic Exploration, 4, 123 - 150.
[26] Tygel, M., Schleicher, J., and Hubral, P., 1996, A unified approach in 3-D seismic reflection imaging, Part II: Theory: Geophysics, 61(3), 759 - 775.
[27] Ye, Y.M., Li, Z.C., Xu, X.G., Zhu,X.F., and Tong, Z.Q., 2009, Preserved amplitude migration based on the one way wave equation in the angle domain: Applied Geophysics, 6(1), 50 - 58.
[28] Zhao, J.X., Zhang , S.L, Wang, C.L., and Ni, Y., 2005, Adaptive spatial-division split-step Fourier migration method: Applied Geophysics, 2(2), 75 - 79.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司