APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2010, Vol. 7 Issue (4): 376-383    DOI: 10.1007/s11770-010-0253-1
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于构造超压的地层压力预测方法研究
申波1,2,张超谟3,毛志强1,2,肖承文4
1. 中国石油大学地球物理与信息工程学院,北京 102249
2. 北京市地球探测与信息技术重点实验室,北京 102249
3. 长江大学教育部油气资源与勘探技术重点实验室,湖北荆州 434023
4. 塔里木油田公司研究员院,新疆库尔勒 841000
A formation pressure prediction method based on tectonic overpressure
Shen Bo1,2, Zhang Chao-Mo3, Mao Zhi-Qiang1,2, and Xiao Cheng-Wen4
1. College of Geophysics and Information Engineering, China University of Petroleum, Beijing 102249, China.
2. Key Laboratory of Earth Prospecting and Information Technology, Beijing 102249, China.
3. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Jingzhou 434023, Hubei, China.
4. Tarim Petroleum Exploration & Development Company, Korla 841000, Xinjiang, China.
 全文: PDF (517 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 传统的地层压力预测方法大都建立在地层欠压实机理之上,对于由其它因素引起的异常高压现象未必适用。Yassir等(1999)发现异常地层压力通常与异常水平应力有密切联系,异常高压带的最大主应力往往很大。基于此,在分析重力场和构造应力场的双重应力场特征基础上,本次研究首先通过常规测井资料建立构造稳定地区的最大主应力的计算模型,将利用该模型计算构造挤压强烈的非稳定地区的主应力结果定义为虚拟最大主应力,再结合相对构造应力的贡献值得到最大主应力,最后在一定的超压范围之内,根据最大主应力与地层压力的拟合关系预测地层压力。通过对A气田的实际资料处理表明,利用该方法得到的地层压力预测值与实际测量值吻合较好,预测精度较传统的等效深度法有明显的提高。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
申波
张超谟
毛志强
肖承文
关键词常规测井资料   地层压力   欠压实   构造挤压   最大主应力   虚拟最大主应力     
Abstract: Traditional formation pressure prediction methods all are based on the formation undercompaction mechanism and the prediction results are obviously low when predicting abnormally high pressure caused by compressional structure overpressure. To eliminate this problem, we propose a new formation pressure prediction method considering compressional structure overpressure as the dominant factor causing abnormally high pressure. First, we establish a model for predicting maximum principal stress, this virtual maximum principal stress is calculated by a double stress field analysis. Then we predict the formation pressure by fitting the maximum principal stress with formation pressure. The real maximum principal stress can be determined by caculating the sum of the virtual maximum principal stresses. Practical application to real data from the A1 and A2 wells in the A gas field shows that this new method has higher accuracy than the traditional equivalent depth method.
Key wordsformation pressure   undercompaction   tectonic stress   maximum principal stress   conventional log data   
收稿日期: 2009-12-31;
基金资助:

本研究由国家“九五”科技攻关项目(9911010102)资助。

引用本文:   
申波,张超谟,毛志强等. 基于构造超压的地层压力预测方法研究[J]. 应用地球物理, 2010, 7(4): 376-383.
SHEN Bo,ZHANG Chao-Mo,MAO Zhi-Qiang et al. A formation pressure prediction method based on tectonic overpressure[J]. APPLIED GEOPHYSICS, 2010, 7(4): 376-383.
 
[1] Anderson, R. A., Ingran, D. S., and Zanier, A. M., 1972, Pressure gradients from well logs: SPE of AIME Annual Meeting, 1259 - 1268.
[2] Athy, L. F., 1930, Density, porosity and compaction of sedimentary rocks: Amer. Assoc. Pet. Geol. Bull., 14(1), 1 - 24.
[3] Deng, J. G., Huang, R. Z., and Tian X. S., 1997, A new method for measuring in situ stress in deep formation: Journal of The University of Petroleum, China, 21(1), 32 - 35.
[4] Eaton, B. A., 1975, The equation for geopressure prediction from well logs: paper SPE 5544 of 50th Annual Fall Meeting of the SPE-AIME, Dallas, USA.
[5] Hottman, C. E., and Jonson, R. K., 1965, Estimation of formation pressures from log derived shale properties: Pet. Tech., 17, 712 - 723.
[6] Jaeger, J. C., and Cook, N. G., 1979, Fundamentals of rock mechanics: Chapman and Hall, 593.
[7] Luo, X., 2004, Quantitative analysis on overpressuring mechanism resulted from tectonic stress: Chinese Journal of Geophysics, 47(6), 1086 - 1093.
[8] Lubanzadio, M., Goulty, N. R., and Swarbrick, R. E., 2006, Dependence of sonic velocity on effective stress in Mesozoic mudstones: Marine and Petroleum Geology, 23, 647 - 653.
[9] Nygaard, R., and Karimi, M., 2008, Pore-pressure prediction in overconsolidated shales: SPE 116619, SPE Eastern Regional/AAPG Eastern Section Joint Meeting, Pittsburgh Pennsylvania.
[10] Pan, K., 2004, Formation pressures prediction technology and its application to prospecting area of Myanmar: Natural Gas Exploration and Development, 4, 28 - 31.
[11] Phillips, D., Han, D. H., and Zoback M. D., 1989, Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone: Geophysics, 54(1), 82 - 89.
[12] Shao, X. J., 2000, A discussion about the methods for predicting pore pressure: Petroleum Exploration and Development, 27(3), 100 - 102.
[13] Terzaghi, K., and Peck, R. B., 1948, Soil mechanics in engineering practice: John Wiley & Sons, Inc., N. Y., 565 - 566.
[14] Tingaya, M., and Hillis, R., 2003, Variation in vertical stress in the Baram Basin, Brunei: teconic and geomechanical implications: Marine and Petroleum Geology, 20, 1201 - 1212.
[15] Yan, P., 2007, The earth stress calculation using well logging data and its applied research in piedmont structure: University of Petroleum, M.E. Thesis, Beijing.
[16] Yassir, N. A., Bell, J. S., and Wei, X. Y., 1999, The relationship of high fluid pressure with porosity and stress field in the sedimentary: Natural Gas Exploraiton and Development, 22(6), 26 - 33.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司