APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2010, Vol. 7 Issue (4): 384-391    DOI: 10.1007/s11770-010-0264-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于测井、VSP和地面地震数据最佳拟合的子波估计
马宏达1,Roy E. White2,胡天跃1
1. 北京大学地球与空间科学学院,北京100871
2. School of Earth Sciences, Birkbeck, University of London, London, WC1, UK.
Wavelet estimation by matching well-log, VSP, and surface-seismic data
Ma Hong-Da1, Roy E. White2, and Hu Tian-Yue1
1. School of Earth and Space Sciences, Peking University, Beijing 100871, China.
2. School of Earth Sciences, Birkbeck, University of London, London, WC1, UK.
 全文: PDF (1271 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文提出了基于测井、VSP和地震数据拟合的子波估计方法,从输入输出都包含随机噪声的统计模型出发,采用相关性拟合技术来提取子波。拟合度和误差分析为整个过程提供了定量的质量控制手段,可以评估数据拟合和子波估计的可靠性。实际数据试算表明,该方法在含有噪声的实际数据中稳定而有效,在地震频带内的子波估计和数据拟合是可靠的。 该方法无需对子波相位和振幅谱进行任何假设,其主要优点在于确定相位的能力。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
马宏达
Roy E. White
胡天跃
关键词相关性拟合技术   VSP数据   子波估计     
Abstract: In this paper, we present a method of wavelet estimation by matching well-log, VSP, and surface-seismic data. It’s based on a statistical model in which both input and output are contaminated with additive random noise. A coherency matching technique is used to estimate the wavelet. Measurements of goodness-of-fit and accuracy provide tools for quality control. A practical example suggests that our method is robust and stable. The matching and estimation of the wavelet is reliable within the seismic bandwidth. This method needs no assumption on the wavelet amplitude and phase and the main advantage of the method is its ability to determine phase.
Key words:   
收稿日期: 2010-06-09;
基金资助:

本研究由国家自然科学基金(40974066 和40821062)和科技部973计划(2007CB209602)资助。

引用本文:   
马宏达,Roy E. White,胡天跃. 基于测井、VSP和地面地震数据最佳拟合的子波估计[J]. 应用地球物理, 2010, 7(4): 384-391.
MA Hong-Da,Roy E. White,HU Tian-Yue. Wavelet estimation by matching well-log, VSP, and surface-seismic data[J]. APPLIED GEOPHYSICS, 2010, 7(4): 384-391.
 
[1] Buland, A., and Omre, H., 2003, Bayesian wavelet estimation from seismic and well data: Geophysics, 68(6), 2000 - 2009.
[2] Cooke, D. A., and Schneider, W. A., 1983, Generalized linear inversion of reflection seismic data: Geophysics, 48, 665 - 676.
[3] Matson, K., 2000, An overview of wavelet estimation using free-surface multiple removal: The Leading Edge, 19, 50 - 55.
[4] Rietsch, E., 1997a, Euclid and the art of wavelet estimation, Part I: Basic algorithm fro noise-free data: Geophysics, 62(6), 1931 - 1938.
[5] Rietsch, E.,1997b, Euclid and the art of wavelet estimation, Part II: Robust algorithm and field-data examples: Geophysics, 62(6), 1939 - 1946.
[6] Simm, R., and White, R. E., 2002, Phase, polarity and the interpreter’s wavelet: First Break, 20(5), 277 - 281.
[7] Tygel, M., and Bleistein, N., 2000, An Introduction to this Special Section (wavelet estimation): The Leading Edge, 19, 37.
[8] Van der Baan, M., 2008, Time-varying wavelet estimation and deconvolution by kurtosis maximization: Geophysics, 73(2), 11 - 18.
[9] Walden, A. T., and White, R. E., 1984, On errors of fit and accuracy in matching synthetic seismograms and seismic traces: Geophysics Prospecting, 32(5), 871 - 891.
[10] Walden, A. T. and White, R. E., 1998, Seismic wavelet estimation: a frequency domain solution to a geophysical noisy input-output problem: IEEE Transactions on Geoscience and Remote Sensing, 36, 287 - 297.
[11] White, R. E., 1980, Partial coherence matching of synthetic seismograms with seismic traces: Geophysical Prospecting, 28, 333 - 358.
[12] White, R. E., 1984, Signal and noise estimation from seismic reflection data using spectral coherence methods: Proc. IEEE, 72, 1340 - 1356.
[13] White, R. E., 1997, The accuracy of well ties: practical procedures and examples, 67th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts. 816 - 819.
[14] White, R. E., and Simm, R., 2003, Tutorial: Good practice in well ties: First Break, 21, 75 - 83.
[15] White, R. E., Simm, R., and Xu, S., 1998, Well tie, fluid substitution and AVO modeling - a North Sea example: Geophysical Prospecting, 46, 323 - 346.
[1] 于永才, 王尚旭, 袁三一, 戚鹏飞. 基于保角变换的双谱域相位谱估计方法及其在地震子波估计中的应用[J]. 应用地球物理, 2011, 8(1): 36-47.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司