APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2011, Vol. 8 Issue (3): 207-216    DOI: 10.1007/s11770-011-0292-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
考虑传播效应的多波保幅AVO正演
侯波1,2,陈小宏1,2,李景叶2,张孝珍3
1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249;
2. 中国石油大学(北京)CNPC物探重点实验室,北京 102249;
3. 中国石化胜利油田分公司地质科学研究院,山东东营 257015
Multi-wave amplitude-preserved AVO modeling considering wave propagation effects
Hou Bo1,2, Chen Xiao-Hong1,2, Li Jing-Ye1,2, and Zhang Xiao-Zhen3
1. State Key Lab of Petroleum Resource and Prospecting, Beijing 102249, China
2. CNPC Key Lab of China University of Petroleum(Beijing), Beijing 102249, China
3. Geological Scientifi c Research Institute of Shengli Oilfi eld, SINOPEC, Dongying 257015, China
 全文: PDF (291 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 传统的AVO正演只考虑了单一界面的反射系数对地震波波场振幅的影响,忽略了地震波在介质中传播的各种传播效应。通过引入地震波在介质中传播的几何扩散、吸收衰减以及透射损失等传播效应,提出了基于射线理论的水平层状介质多波保幅AVO正演方法。推导了水平层状介质多波几何扩散校正公式,来描述多波在介质中传播的几何扩散效应。通过直接引入复旅行时,而无需借助复速度,建立了复旅行时与品质因子的关系,来描述粘弹介质的吸收衰减。直接求解Zoeppritz方程计算多波的透射系数,用于描述多波在介质中传播时的透射损失。数值计算表明,几何扩散、吸收衰减以及透射损失对多波振幅的影响是随偏移距变化而变化的,多波保幅AVO正演需要考虑波传播效应对反射波振幅的改造。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯波
陈小宏
李景叶
张孝珍
关键词保幅AVO   几何扩散   吸收衰减   透射损失   复旅行时   多波     
Abstract: Traditional AVO forward modeling only considers the impact of reflection coeffi cients at the interface on seismic wave fi eld amplitude and ignores various propagation effects. Introducing wave propagation effects including geometric spreading, transmission loss, attenuation into seismic wave propagation, multi-wave amplitude-preserved AVO forward modeling for horizontally layered media based on ray theory is proposed in this paper. We derived the multi-wave geometric spreading correction formulas for horizontally layered media in order to describe the geometric spreading effect of multi-wave propagation. Introducing the complex traveltime directly, we built the relationship between complex traveltime and quality factor without the help of complex velocity to describe the attenuation of viscoelastic media. Multi-wave transmission coefficients, obtained by solving the Zoeppritz equations directly, is used to describe the transmission loss. Numerical results show that the effects of geometric spreading, attenuation, and transmission loss on multi-wave amplitude varies with offset and multi-wave amplitude-preserved AVO forward modeling should consider the reconstructive effect of wave propagation on refl ection amplitude.
Key wordsAmplitude-preserved AVO   geometric spreading   attenuation   transmission loss   complex traveltime   multi-wave   
收稿日期: 2010-01-31;
基金资助:

国家自然科学基金项目(编号:41074098)和国家重点基础研究发展计划(973计划)(编号:2007CB209606)联合资助。

引用本文:   
侯波,陈小宏,李景叶等. 考虑传播效应的多波保幅AVO正演[J]. 应用地球物理, 2011, 8(3): 207-216.
HOU Bo,CHEN Xiao-Hong,LI Jing-Ye et al. Multi-wave amplitude-preserved AVO modeling considering wave propagation effects[J]. APPLIED GEOPHYSICS, 2011, 8(3): 207-216.
 
[1] Aki, K., and Richards, P. G., 1980, Quantitative seismology: Theory and methods,Vol. 1, W.H. Freeman & Co., San Francisco, CA.
[2] Bleistein, N., Cohen, J. K., and Stockwell, J. W., 2001, Mathematical Methods of Seismic Imaging, Migration and Inversion: Springer-Verlag, New York.
[3] Castagna, J. P., Swan, H. W., and Foster, D. J., 1998, Framework for AVO gradient and intercept interpretation: Geophysics, 63(3),948-956.
[4] Castagna, J. P., and Swan, H. W., 1997, Principles of AVO cross plotting: The Leading Edge, 16, 337-342.
[5] Cerveny, V., and Hron, F., 1980, The ray series method and dynamic ray tracing system for three-dimensional inhomogeneous media:Bull., Seis, Soc. Am., 70, 47-77.
[6] Cerveny, V., and Ravindra, R., 1971, Theory of seismic head waves: Univ. of Toronto Press, Canada.
[7] Cerveny, V., Molotkov, I. A., and Psencik, I., 1977, Ray method in seismology: Charles University, Prague.
[8] Che, C. X., Wang, X. M., and Lin, W. J., 2010, The Chebyshev spectral element method using staggered predictor and corrector for elastic wave simulations, Applied Geophysics, 7(2), 174-184.
[9] 陈天胜, 刘洋, 魏修成, 2006, 纵波和转换波联合AVO反演方法研究: 中国石油人学学报(自然科学版), 30(1), 33-37.
[10] Foster, D. J., Keys, R. G., and Lane, F. D., 2010, Interpretation of AVO anomalies: Geophysics, 75(5), 75A3-75A13.
[11] Fuchs, K, Muller, G., 1971, Computation of synthetic seismograms with the reflectivity method and comparison with observations: Geophysical Journal Royal Astronomical Society, 23, 417- 433.
[12] Gidlow, P. M., Smith, G. C., and Vail, P. J., 1992, Hydrocarbon detection using fluid factor traces: Joint SEG/ EAGE Summer Research Workshop, Technical Program and Abstracts, 78-89.
[13] Hearn, D. J., and Krebest, E. S., 1990, On computing ray-synthetic seismograms for anelastic media using complex rays: Geophysics, 55(4) ,422-432.
[14] Hron, F., and Nechtschein, S., 1996, Extension of Asymptotic Ray Theory to linear viscoelastic media: 66th Annual International Meeting, SEG, Expanded Abstracts, 1983-1986.
[15] Hron, F., May, B. T., Covey, J. D., and Daley, P. F., 1986, Synthetic seismic sections for acoustic, elastic, anisotropic, and vertically inhomogeneous layered media: Geophysics, 51(3 ), 710-735.
[16] Kennett, B. L. N., 1983, Seismic wave propagation in stratified media: New York, Cambridge University Press, London.
[17] Koefoed, O., 1955, On the effect of Poisson’s ratios of rock strata on the reflection coefficients of plane waves: Geophysical Prospecting, 3, 381-387.
[18] Mallick, S., and Frazer, L. N., 1987, Practical aspects of reflectivity modeling: Geophysics, 52(10), 1355- 1364.
[19] Muller, G., 1985, The reflectivity method: a tutorial: Journal of Geophysics, 58, 153-174.
[20] Ostrander, W. J., 1984, Plane wave reflection coefficients for gas sands at nonnormal angles of incidence: Geophysics 49,1637-l 648.
[21] Rutherford, S. R., and Williams, R. H., 1989, Amplitude- versus-offset variations in gas sands: Geophysics, 54(6), 680-688.
[22] Shuey, R. T., 1985, A simplification of the Zoeppritz equations: Geophysics, 50, 609-614.
[23] Wei, X. C., Chen T. S., and Ji, Y. X., 2008, Converted wave AVO inversion for average velocity ratio and shear wave reflection coefficient: 78th Annual International Meeting, SEG, Expanded Abstracts, 269-273.
[24] 杨培杰, 穆星, 印兴耀. 2009, 叠前三参数同步反演方法及其应用: 石油学报, 30(2), 232-236.
[25] 严哲, 顾汉明, 2010, 量子行为的粒子群算法在叠前AVO反演中的应用: 石油地球物理勘探, 45(4), 516-519.
[26] 张繁昌, 印兴耀, 2004, 一种叠前地震记录的全波场正反演方法: 石油物探, 43(3), 217-222.
[27] 张繁昌, 印兴耀, 2005, 层状半空间地震数据的弹性波方程反演:石油地球物理勘探, 40(5), 523-529.
[28] Zoeppritz, K., 1919, On the reflection and penetration of seismic waves through unstable layers: Goettinger Nachr, I, 66 - 84.
[1] 谢玮,王彦春,刘学清,毕臣臣,张丰麒,方圆,Tahir Azeem. 基于改进的贝叶斯推断和最小二乘支持向量机的非线性多波联合AVO反演*[J]. 应用地球物理, 2019, 16(1): 70-82.
[2] 方圆, 张丰麒, 王彦春. 基于双约束项的广义线性多波联合反演[J]. 应用地球物理, 2016, 13(1): 103-115.
[3] 韩建光, 王赟, 韩宁, 邢占涛, 芦俊. 多波高斯束叠前深度偏移速度分析[J]. 应用地球物理, 2014, 11(2): 186-196.
[4] 杨小慧, 曹思远, 李德春, 于鹏飞, 张浩然. 瑞利型槽波品质因子及特性分析[J]. 应用地球物理, 2014, 11(1): 107-114.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司