APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2011, Vol. 8 Issue (3): 197-205    DOI: 10.1007/s11770-011-0285-1
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于岩石物理分析的叠前弹性反演预测含气砂岩分布
贺芙邦1,游俊2,陈开远1
1. 中国地质大学(北京)能源学院,北京 100083;
2. GNT国际公司,北京 100192
Gas sand distribution prediction by prestack elastic inversion based on rock physics modeling and analysis
He Fu-Bang1, You Jun2, and Chen Kai-Yuan1
1. Energy Resources College of China University of Geosciences (Beijing), Beijing 100083, China.
2. GNT International Inc., Beijing 100192, China.
 全文: PDF (1525 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地震反演是当今最广泛应用于含油气储层预测的技术之一,取得了很多很好的预测效果,但也有失败的例子,达不到区分岩性和识别流体的目的。而本文介绍的建立在岩石物理建模和分析基础上的地震弹性反演,可将含油气储层预测由定性向(半)定量推进一步。根据岩石物理建模和正演扰动分析,可深刻理解岩石物性参数与地震弹性参数之间的内在关系,进而寻找储层岩性、物性和含油气性的敏感地震弹性参数,建立起理论岩石物理解释图版。岩石物理分析结果和所建立的岩石物理解释图版分别用以指导地震反演和反演结果的解释,实现油气储层分布预测和流体检测的目的。文中的含气砂岩分布预测实例研究应用结果表明,这种方法较叠后地震反演储层预测技术具有无可比拟的优越性,效果更佳,效率更高。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
贺芙邦
游俊
陈开远
关键词岩石物理   地震响应   弹性参数   弹性反演   储层预测   建模     
Abstract: Seismic inversion is one of the most widely used technologies for reservoir prediction. Many good results have been obtained but sometimes it fails to differentiate the lithologies and identify the fluids. However, seismic prestack elastic inversion based on rock physics modeling and analysis introduced in this paper is a significant method that can help seismic inversion and interpretation reach a new quantitative (or semi-quantitative) level from traditional qualitative interpretation. By doing rock physics modeling and forward perturbation analysis, we can quantitatively analyze the essential relationships between rock properties and seismic responses and try to find the sensitive elastic properties to the lithology, porosity, fluid type, and reservoir saturation. Finally, standard rock physics templates (RPT) can be built for specific reservoirs to guide seismic inversion interpretation results for reservoir characterization and fluids identification purpose. The gas sand distribution results of the case study in this paper proves that this method has unparalleled advantages over traditional post-stack methods, by which we can perform reservoir characterization and seismic data interpretation more quantitatively and efficiently.
Key wordsRock physics   seismic response   elastic parameters   elastic inversion   reservoir characterization   modeling   
收稿日期: 2011-06-09;
引用本文:   
贺芙邦,游俊,陈开远. 基于岩石物理分析的叠前弹性反演预测含气砂岩分布[J]. 应用地球物理, 2011, 8(3): 197-205.
HE Fu-Bang,YOU Jun,CHEN Kai-Yuan. Gas sand distribution prediction by prestack elastic inversion based on rock physics modeling and analysis[J]. APPLIED GEOPHYSICS, 2011, 8(3): 197-205.
 
[1] Aki, K., and Richards, P. G., 1980, Quantitative seismology: Theory and methods: W. H. Freeman and Co., San Francisco.
[2] Avseth, P., Mukerji, T., and Mavko, G., 2005, Quantitative seismic interpretation: Applying rock physics tools to reduce interpretation risk: Cambridge University Press, UK.
[3] Castagna, J. P., Batzle, M. L., and Eastwood, R. L., 1985, Relationship between compressional-wave and shearwave velocities in clastic silicate rocks: Geophysics, 50, 571 - 581.
[4] Castagna, J. P., Batzle, M. L., and Kan, T. K., 1993, Rock physics - The link between rock properties and AVO response: in Castagna J. P., and Backus, M., Eds., Offset-dependent reflectivity - Theory and practice of AVO analysis, Investigations in Geophysics, No.8, Soc. Explor. Geophys., 135 - 171.
[5] Fatti, J. L., Smith, G. C., Vail, P. G., and et al., 1994, Detection of gas in sandstone reservoirs using AVO analysis: A 3-D seismic case story using the Geostack technique: Geophysics, 59, 1362 - 1376.
[6] Gelfand, V., Ng, P., Nguyen, H., and Larner, K., 1986, Seismic lithologic modeling of amplitude-versus-offset data: 56th Ann. Internat. Mtg. Soc. Explor. Geophys., Expanded Abstracts, 334 - 336.
[7] Gray, D., Goodway, W., and Chen, T., 1999, Bridging the gap: Using AVO to detect changes in fundamental elastic constants: 69th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 852 - 855.
[8] Greenberg, M. L., and Castagna, J. P., 1992, Shearwave velocity estimation in porous rocks: Theoretical formation, preliminary verification and applications: Geophysical Prospecting, 40, 195 - 210.
[9] 黄伟传, 杨长春, 范桃园, 麻三怀, 2007, 岩石物理分析在储层预测中的应用: 地球物理学进展, 22(6), 179l - 1795.
[10] King, M. S., 2005, Rock-physics developments in seismic exploration:A personal 50-year perspective: Geophysics, 70(6), 3ND - 8ND.
[11] Krief, M., Grant, J., Stellingwerff, J., and Ventre, J., 1990, A petrophysical interpretation using the velocities of P and S wave (full-waveform sonic): The Log Analyst, 31, 355 - 369.
[12] 李明, 侯连华, 邹才能, 殷积峰, 刘晓等著, 2005, 岩性地层油气藏地球物理勘探技术与应用: 石油工业出版社, 北京.
[13] Mavko, G., Mukerji, T., and Dvorkin, J., 2003, The rock physics handbook: Cambridge University Press, UK.
[14] Oslash;degaard, E., and Avseth P., 2004, Well log and seismic data analysis using rock physics templates: First Break, 22, 37 - 43.
[15] Raymer, L. L., Hunt, E. R., and Gardner, J. S., 1980, An improved sonic transit time-to-porosity transform: Soc. Professional Well Log Analysis (SPWLA), 21st Ann. Logg. Symp. Paper P.
[16] Shuey, R. T., 1985, A simplification of the Zoeppritz equation: Geophysics, 50, 609 - 614.
[17] 唐建伟, 2008, 地震岩石物理学研究有关问题的探讨: 石油物探, 47(4), 398 - 404.
[18] Xu, S. Y., and White, R. E., 1995, A new velocity for claysand mixtures: Geophysical Prospecting, 43(1), 91 - 118.
[19] Xu, S. Y., and White, R. E., 1996, A physical model for shear wave velocity prediction: Geophysical Prospecting, 44, 687 - 717.
[20] 徐胜峰, 李勇根, 曹宏, 姚逢昌, 2009, 地震岩石物理研究概述: 地球物理学进展, 24(2), 680 - 691.
[21] Ye, T. R., Tang, J. M., and John T., 2009, Application of P wave and shear wave joint inversion for deeper tight gas prediction in west Sichuan basin: CPS/SEG Beijing 2009 International Geophysical Conference & Exposition.
[1] 马汝鹏,巴晶,Carcione J. M. ,周欣,李帆. 致密油岩石纵波频散及衰减特征研究:实验观测及理论模拟*[J]. 应用地球物理, 2019, 16(1): 36-49.
[2] 钱恪然,何治亮,陈业全,刘喜武,李向阳. 各向异性富有机质页岩的岩石物理建模及脆性指数研究[J]. 应用地球物理, 2017, 14(4): 463-480.
[3] 杨志强,何涛,邹长春. 筇竹寺和五峰—龙马溪组页岩地震岩石物理等效模型及等效孔隙纵横比的分析[J]. 应用地球物理, 2017, 14(3): 325-336.
[4] 刘喜武,郭智奇,刘财,刘宇巍. 四川盆地龙马溪组页岩气储层各向异性岩石物理建模及应用[J]. 应用地球物理, 2017, 14(1): 21-30.
[5] 刘杰,刘江平,程飞,王京,刘肖肖 . 祁连山冻土区水合物地层岩石物理模型的构建[J]. 应用地球物理, 2017, 14(1): 31-39.
[6] 付博烨,符力耘,魏伟,张艳. 超声岩石物理实验尾波观测中边界反射的影响分析[J]. 应用地球物理, 2016, 13(4): 667-682.
[7] 宗兆云,印兴耀,李坤. 基于贝叶斯理论的时频域联合AVO反演方法研究[J]. 应用地球物理, 2016, 13(4): 631-640.
[8] 石艳玲,胡祖志,黄文辉,魏强,张生,孟翠贤,冀连胜. 电磁-重力联合建模约束反演圈定GS凹陷深层目标[J]. 应用地球物理, 2016, 13(3): 469-479.
[9] 张文辉,符力耘,张艳,金维浚. 利用三维数字岩心计算龙马溪组页岩等效弹性参数[J]. 应用地球物理, 2016, 13(2): 364-374.
[10] 郭智奇,刘财,刘喜武,董宁,刘宇巍. 基于岩石物理模型的页岩油储层各向异性研究[J]. 应用地球物理, 2016, 13(2): 382-392.
[11] 罗伟平,李洪奇,石宁. 半监督最小二乘支持向量机的研究及其在海上油田储层预测中的应用[J]. 应用地球物理, 2016, 13(2): 406-415.
[12] 李生杰, 邵雨, 陈旭强. 碳酸盐岩储层各向异性岩石物理建模与孔隙结构分析[J]. 应用地球物理, 2016, 13(1): 166-178.
[13] 朱超, 郭庆新, 宫清顺, 刘占国, 李森明, 黄革萍. 基于Xu-White模型的致密储层叠前正演模拟研究与应用[J]. 应用地球物理, 2015, 12(3): 421-431.
[14] 潘建国, 王宏斌, 李闯, 赵建国. 孔隙结构对致密碳酸盐岩地震岩石物理特征的影响分析[J]. 应用地球物理, 2015, 12(1): 1-10.
[15] 黄欣芮, 黄建平, 李振春, 杨勤勇, 孙启星, 崔伟. 基于各向异性致密砂岩油储层的地震岩石物理建模及脆性指数研究[J]. 应用地球物理, 2015, 12(1): 11-22.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司