APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2010, Vol. 7 Issue (3): 197-209    DOI: 10.1007/s11770-010-0255-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
位场垂向导数零值位置空间变化规律研究
王万银1,张功成2,梁建设2

1. 长安大学重磁方法技术研究所,长安大学地质工程与测绘学院,长安大学西部矿产资源与地质工程教育部重点实验室,西安 710054
2. 中海石油研究中心,北京 100027

Spatial variation law of vertical derivative zero points for potential field data
Wang Wan-Yin1, Zhang Gong-Cheng2, and Liang Jian-She2

1. Gravity & Magnetic Institute of Chang’an University; College of Geology Engineering and Geomatics, Chang’an University; Key Laboratory of Western China’s Mineral Resources and Geological Engineering, China Ministry of Education, Xi’an, 710054, China.
2. Research Institute of China National Offshore Oil Coporation (CNOOC), Beijing, 100027, China.

 全文: PDF (4394 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文推导了简单规则形体(单一边界、双边界和多边界)重力异常垂向一阶导数和重力异常垂向二阶导数零值位置的解析表达式,并研究了其空间变化规律;对难以得到其零值位置解析表达式的简单规则形体,利用其剖面图和断面图上的零值位置来研究其空间变化规律。研究结果表明,重力异常垂向二阶导数与重力异常垂向一阶导数零值位置的空间变化规律基本一致,只是重力异常垂向二阶导数零值位置比重力异常垂向一阶导数的零值位置更靠近地质体上顶面边缘位置,且其分辨能力更强。对于单边界模型,随着埋深的增加,重力异常垂向导数的零值位置均自形体上顶边缘位置向外侧偏移,但最终均能收敛于某一固定值;对于双边界模型,随着埋深的增加,重力异常垂向导数的零值位置自形体上顶边缘位置一直向外侧偏移;对于多边界模型,随着埋深的增加,重力异常垂向导数零值位置自形体上顶边缘位置向外侧收敛,部分边界的零值位置重合并消失。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王万银
张功成
梁建设
关键词垂向导数   零值位置   空间变化规律   边缘位置     
Abstract: In this paper we deduce the analytic solutions of the first- and second-order vertical derivative zero points for gravity anomalies in simple regular models with single, double, and multiple edges and analyze their spatial variation. For another simple regular models where it is difficult to obtain the analytic expression of the zero point, we try to use the profile zero points to analyze the spatial variation. The test results show that the spatial variation laws of both first- and second-order vertical derivative zero points are almost the same but the second-order derivative zero point position is closer to the top surface edge of the geological bodies than the first-order vertical derivative and has a relatively high resolution. Moreover, with an increase in buried depth, for a single boundary model, the vertical derivative zero point location tends to move from the top surface edge to the outside of the buried body but finally converges to a fixed value. For a double boundary model, the vertical derivative zero point location tends to migrate from the top surface edge to the outside of the buried body. For multiple boundary models, the vertical derivative zero point location converges from the top surface edge to the outside of the buried body where some zero points coincide and finally vanish. Finally, the effectiveness and reliability of the proposed method is verified using real field data.
Key wordsvertical derivative   zero point   spatial variation law   edge location   
收稿日期: 2010-04-12;
基金资助:

本研究由国家科技重大专项《大型油气田及煤层气开发》之“海洋深水区油气勘探关键技术”项目(2008ZX05025)和国家重大基础研究项目(973)“南海深水盆地油气资源形成与分布”基础性研究项目(2009CB219400)联合资助。

引用本文:   
王万银,张功成,梁建设. 位场垂向导数零值位置空间变化规律研究[J]. 应用地球物理, 2010, 7(3): 197-209.
WANG Wan-Yin,ZHANG Gong-Cheng,LIANG Jian-She. Spatial variation law of vertical derivative zero points for potential field data[J]. APPLIED GEOPHYSICS, 2010, 7(3): 197-209.
 
[1] Bhattacharyya, B. K., 1965, Two-dimensional harmonic analysis as a tool for magnetic interpretation: Geophysics, 30(5), 829 - 857.
[2] Cordell, L., 1979, Gravimetric expression of graben faulting in Santa Fe Country and the Espanola Basin, New Mexico: New Mexico Geol. Soc. Guidebook, 30th Field Conf, 59 - 64.
[3] Cordell, L., and Grauch, V. J. S., 1985, Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico: In Hinze, W. J., Ed., The utility of regional gravity and magnetic anomaly maps: Soc. Explor. Geophys., 181 - 197.
[4] Hood, P., and McClure, D. J., 1965, Gradient measurements in ground magnetic prospecting: Geophysics. 30(3), 403 - 410.
[5] Hood, P. J., and Teskey, D. J., 1989, Aeromagnetic gradiometer program of the Geological Survey of Canada: Geophysics, 54(8), 1012 - 1022.
[6] Grauch, V. J. S., and Cordell, L., 1987, Limitations of determining density or magnetic boundaries from the horizontal gradient of gravity or pseudo-gravity data: Geophysics, 52(1), 118 - 121.
[7] Miller, H. G., and Singh, V., 1994, Potential field tilt-a new concept for location of potential field sources: Journal of Applied Geophysics, 32, 213 - 217.
[8] Nabighian, M. N., 1972, The analytic signal of two-dimensional magnetic bodies with polygonal cross-section - its properties and use for automated anomaly interpretation: Geophysics, 37(3), 507 - 517.
[9] Nabighian, M. N., 1984. Toward a three dimensional automatic interpretation of potential field data via generalized Hilbert transforms - Fundamental relations: Geophysics, 49(6), 780 - 786.
[10] Nelson, J. B., 1988, Comparison of gradient analysis techniques for linear two-dimensional magnetic sources: Geophysics, 53(8), 1088 - 1095.
[11] Qin, S., 1994, An analytic signal approach to the interpretation of total field magnetic anomalies: Geophysical Prospecting, 42(6), 665 - 675.
[12] Roest, W. R., Verhoef. J., and Pilkington, M., 1992, Magnetic interpretation using the 3-D analytic signal: Geophysics, 57(1), 116 - 125.
[13] Sandwell, D. T., and Smith, W. H. F., 2009, Global marine gravity form retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate: Journal of Geophysical Reseach, 114, B01411 doi:10.1029/2008JB006008, 2009.
[14] Wijns, C., Perez, C., and Kowalczyk, P., 2005, Theta map: Edge detection in magnetic data: Geophysics, 70(4), L39 - L43.
[15] Yu, Q. F., and Lou, H., 1994, Locating the boundaries of magnetic or gravity sources using horizontal gradient anomalies: Computing Techniques for Geophysical and Geochemical Exploration (in Chinese), 16(4), 363 - 367.
[16] Zhong, H. Z., and Li, P. L., 1996. Comprehensive geophysical interpretation from gravity-magnetic data in Hanjiang sag: China Offshore Oil and Gas (in Chinese), 10(5), 331 - 338.
[1] 王万银, 潘玉, 邱之云. 位场数据归一化总水平导数垂向导数边缘识别方法[J]. 应用地球物理, 2009, 6(3): 226-233.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司