APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2010, Vol. 7 Issue (3): 210-216    DOI: 10.1007/s11770-010-0248-3
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
二相随机介质有效电导率的广义混合率模型研究
余勇,吴小平
中国科学技术大学蒙城地球物理国家野外观测站,地球和空间科学学院,合肥 230026
Study of the generalized mixture rule for determining effective conductivity of two-phase stochastic models
Yu Yong1 and Wu Xiaoping1

1. Mengcheng National Geophysical Observatory, School of Earth and Space Science, University of Science and Technology of China, Hefei 230026, China.

 全文: PDF (1502 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 广义混合率模型目前多应用于岩石的流变、杨氏模量等力学性质的研究,较少应用于多相介质岩石的有效电导率研究。本文利用三维有限元方法计算得到大量二相随机介质模型的有效电导率数据,引入广义混合率的有效电导率模型进行数据拟合,发现广义混合率模型参数J与两相介质电导率比值有关,并首次获得参数J与两相介质电导率比值之间的关系式,据此可以快速准确的预测(计算)任意二相介质的有效电导率,其结果较已有的随机介质模型和有效介质理论模型公式更为准确,为精细储集层评价奠定坚实基础。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
余勇
吴小平
关键词广义混合率   二相介质   有效电导率     
Abstract: The generalized mixture rule (GMR) is usually applied in determining mechanical properties such as the rheological property and Young’s modulus of multi-phase rocks. However, it is rarely used to determine electrical conductivity of multi-phase rocks presently. In this paper, we calculate the effective conductivity using the 3D finite element method for a large number of two-phase medium stochastic models. The GMR is then employed as an effective conductivity model to fit the data. It shows a very close relationship between the parameter J of GMR and the ratio of conductivities of the two phases. We obtain the equations of the parameter J with the ratio of conductivity of two phases for the first time. On this basis, we can quickly predict (or calculate) the effective conductivity of any two-phase medium stochastic model. The result is much more accurate than two other available effective conductivity models for the stochastic medium, which are the random model and effective medium theory model, laying a solid base for detailed evaluation of oil reservoirs.
Key wordsGeneralized mixture rule   two-phase media   effective conductivity   
收稿日期: 2010-06-14;
基金资助:

本研究由国家基金(40874034)和科学院知识创新工程重要方向项目(KZCX2-YW-QN508) 资助项目。

引用本文:   
余勇,吴小平. 二相随机介质有效电导率的广义混合率模型研究[J]. 应用地球物理, 2010, 7(3): 210-216.
YU Yong,WU Xiao-Ping. Study of the generalized mixture rule for determining effective conductivity of two-phase stochastic models[J]. APPLIED GEOPHYSICS, 2010, 7(3): 210-216.
 
[1] Archie, G. E., 1942, The electrical resistivity log as an aid in determining some reservoir characteristics: Trans. Am. Inst. Min. Metall. Pet. Eng. 146, 54 - 62.
[2] Bigalke, J., 1999, Investigation of the conductivity of random networks: Physica A, 272, 281 - 293.
[3] ——, 2000, A study concerning the conductivity of porous rocks: Phys. Chem. Earth A, 25, 189- 194.
[4] ——, 2003, Analysis of conductivity of random media using dc, MT, and TEM: Geophysics, 68(2), 506-515.
[5] Fiori, A., Jankovic, I., and Dagan, G., 2005, Effective conductivity of heterogeneous multiphase media with circular inclusions: Physical Review Letters, 94, 224502.
[6] Garboczi, E. J., 1998, Finite element and finite difference programs for computing the linear electric and elastic properties of digital images of random materials: NISTIR 6269, United States Department of Commerce Technology Administration, National Institute of Standards and Technology.
[7] Gueguen, Y. and Palciauskas, V., 1994, Introduction to the physics of rocks: Princeton University Press, Princeton, NJ.
[8] Glover, P. W. J., Hole, M. J., and Pous, J., 2000a, A modified Archie’s law for two conducting phases: Earth Planet Sci. Lett., 180 (3 - 4), 369 - 383.
[9] Glover, P. W. J., Pous, J., Queralt, P., Munoz, J. A., Liesa, M., and Hole, M. J., 2000b, Integrated two-dimensional lithospheric conductivity modeling in the Pyrenees using field-scale and laboratory measurements: Earth Planet Sci. Lett., 178, 59-72.
[10] Hashin, Z., and Shtrikman, S., 1962, A variational approach to the theory of effective magnetic permeability of multiphase materials: J. Appl. Phys., 33, 3125-3131.
[11] Hakobyan, Y., Papoulia, K. D., and Grigoriu, M. D., 2007, Physical and geometrical percolations of effective conductivity on a lattice: Phys. Rev. B, 76, 144205.
[12] Holland, K. G., and Ahrens, T. J., 1997, Melting of (Mg, Fe)2SiO4 at the core-mantle boundary of the earth: Science, 275(5306), 1623 - 1625.
[13] Ji, S. C., 2004a, A generalized mixture rule for estimating the viscosity of solid-liquid suspensions and mechanical properties of polyphase rocks and composite materials: J. Geophys. Res, 109, B10207.
[14] ——, 2004b, Generalized means as an approach for predicting Youngs moduli of multiphase materials: Mater. Sci. Eng. A, 366, l95 - 20l.
[15] Ji, S. C., Wang, Q., Xia, B., and Xu, Z. Q., 2006, Generalized mixture rule and its applications to rheology of the Earth materials: Acta Petrologica Sinica (in Chinese), 22(7), 2067 - 2080.
[16] Landauer, R., 1952, The electrical resistance of binary metallic mixtures: J. Appl. Phys., 23, 779 - 784.
[17] Lebovka, N. I., Tarafdar, S., and Vygornitskii, N. V., 2006, Computer simulation of electrical conductivity of colloidal dispersions during aggregation: Phys. Rev. E, 73, 031402.
[18] Li, J. H., 2005, Study on the whole conductivity of mixture: Chinese J. Geophys. (in Chinese), 48(6), 1406 - 1411.
[19] Liu, X. F., Sun, J. M., and Wang, H. T, 2009, Numerical simulation of rock electrical properties based on digital cores: Applied Geophysics, 6(1), 1 - 7.
[20] Ma, X. B., Kong, X. R., Liu, H. B., and Yan, Y. L., 2005, The electrical structure of northeastern Qinghai Tibet Plateau: Chinese J. Geophys.(in Chinese), 48(3), 689 - 697.
[21] Maxwell, J. C., 1873, A treatise on electricity and magnetism: Clarendon Press, Oxford.
[22] McLachlan, D. S., Blaszkiewicz, M., and Newnham, R. E., 1990, Electrical resistivity of composites: Journal of the American Ceramic Society, 73(8), 2187 - 2203.
[23] McLachlan, D. S., 1989, Measurement and analysis of a model dual conductivity medium using a generalized effective medium theory: Physica A, 157(1), 188 - 191.
[24] Schilling, F. R., Partzsch, G. M., Brasse, H., and Schwartz, G., 1997, Partial melting below the magmatic arc in the central Andes deduced from geoelectric field experiments and laboratory data: Phys. Earth Planet. Int., 103, 17 - 31.
[25] Shankland, T. J., and Waff, H. S., 1977, Partial melting and electrical conductivity anomalies in the upper mantle: J. Geophys. Res., 82, 5409 - 5417.
[26] Tao, G., Yue, W. Z., and Xie, R. H., 2005, A new method for theoretical modeling and numerical experiments on petrophysical studies: Progress in Geophysics (in Chinese), 20(1), 4 - 11.
[27] Waff, H. S., 1974, Theoretical consideration of electrical conductivity in a partially molten mantle and implications for geothermometry: J. Geophys. Res., 79, 4003 - 4010.
[28] Warren, J. E., and Price, A. S., 1961, Flow in heterogeneous porous media: Trans. AIME (SPEJ), 222, 153 - 183.
[29] Wu, X. P., 2003, A 3-D finite-element algorithm for DC resistivity modeling using shifted incomplete Cholesky conjugate gradient method: Geophys. J. Int., 154(3), 947 - 956.
[30] Wu, X. P., and Wang, T. T., 2003, A 3-D finite-element resistivity forward modeling using conjugate gradient algorithm: Chinese J. Geophys. (in Chinese), 46(3), 428 - 432.
[31] Xu,Y. S., Shankland, T. J., and Poe B. T., 2000, Laboratory-based electrical conductivity in the Earth’s mantle: J. Geophys. Res., 105(B12), 27865 - 27876.
[32] Yue, W. Z., Li, Z., Zhu, K. Q., and Tao, G., 2005, The simulation of conductivity of binary mixtures with lattices Boltzmann method: Chinese J. Geophys. (in Chinese), 48(2), 434 - 438.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司