APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2010, Vol. 7 Issue (2): 158-165    DOI: 10.1007/s11770-010-0240-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
考虑多种因素影响的海上地震勘探气枪震源单枪子波数值模拟
李国发1,2,曹明强1,2,陈浩林3,倪成洲3
1. 油气资源与探测国家重点实验室(中国石油大学(北京)),北京 102249
2. 中国石油大学(北京)CNPC物探重点实验室,北京 102249
3. 中国石油天然气集团公司东方地球物理公司海上勘探事业部,天津 300280
Modeling air gun signatures in marine seismic exploration considering multiple physical factors
Li Guo-Fa1,2, Cao Ming-Qiang1,2, Chen Hao-Lin3, and Ni Cheng-Zhou3

1. State Key Laboratory of Petroleum Resource and Prospecting (China University of Petroleum), Beijing 102249, China.
2. Key Laboratory of Geophysical Exploration of China National Petroleum Corporation, China University of Petroleum, Beijing 102249, China.
3. BGP Offshore, PetroChina, Tianjin 300280, China.

 全文: PDF (667 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在分析Ziolkowski气泡振动模型局限性的基础上,建立了多种实际因素影响下的海上地震勘探单枪子波模型。此模型考虑了气泡与周围流体的热传导作用和枪口节流作用对气泡振动的影响,同时也考虑了气泡上浮,液体粘度和枪体本身等气泡周围环境因素对气枪子波的影响。相对于Ziolkowski初始模型,改进模型所模拟的气枪子波主峰值减小,气泡振动衰减加快,与实测子波吻合性较好。实验分析表明:(1)枪口节流作用控制着气枪子波主脉冲值的大小,(2)气泡上浮引起周围静水压力值减小,气泡振动的周期随之改变,(3)气泡壁的热传导作用和液体粘度是引起气泡振动衰减的主要因素。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
李国发
曹明强
陈浩林
倪成洲
关键词热传导   枪口节流   液体粘度   海上勘探   气枪子波     
Abstract: Based on analyzing the limit of Ziolkowski’s bubble oscillation formulation, a new model with various physical factors is established to simulate air gun signatures for marine seismic exploration. The practical effects of physical factors, such as heat transfer across the bubble wall, air gun port throttling, vertical rise of the bubble, fluid viscosity, and the existence of the air gun body were all taken into account in the new model. Compared with Ziolkowski’s model, the signatures simulated by the new model, with small peak amplitude and rapid decay of bubble oscillation, are more consistent with actual signatures. The experiment analysis indicates: (1) gun port throttling controls the peak amplitude of air gun pulse; (2) since the hydrostatic pressure decreases when the bubble rises, the bubble oscillation period changes; (3) heat transfer and fluid viscosity are the main factors that explain the bubble oscillation damping.
Key words:   
收稿日期: 2010-03-30;
基金资助:

本研究由973基础研究课题(编号:2007CB209608)和863高新技术研究项目(编号:2007AA06Z218)资助。

引用本文:   
李国发,曹明强,陈浩林等. 考虑多种因素影响的海上地震勘探气枪震源单枪子波数值模拟[J]. 应用地球物理, 2010, 7(2): 158-165.
LI Guo-Fa,CAO Ming-Qiang,CHEN Hao-Lin et al. Modeling air gun signatures in marine seismic exploration considering multiple physical factors[J]. APPLIED GEOPHYSICS, 2010, 7(2): 158-165.
 
[1] Chen, H. L., and Ni, C. Z., 2008, Simulation and application of far-field wavelet for air gun array: Oil Geophysical Prospecting (in Chinese), 43(6), 623 - 625.
[2] Chen, H. L., Quan, H. Y., Chen,H.L., Quan,H.Y.,Yu,G.P., Li,W.D., and Liu,Y.Y., 2008, Summary of air gun source theory and technology: Equipment for Geophysical Prospecting (in Chinese), 18(4), 211 - 217.
[3] Fricke, J. R., and Davis, J. M., 1985, A standard quantitative calibration procedure for marine seismic source: Geophysics, 50(1), 1525 - 1532.
[4] Gilmore, F. R., 1952, Collapse of a spherical bubble: Hydrodynamics Laboratory, California Institute of Technology, Report No.26, 4.
[5] Johnson, D. T., 1994, Understanding air-gun bubble behavior: Geophysics, 59(11), 1729 - 1734.
[6] Keller, J. B., and Kolodner, I. I., 1956, Damping of underwater explosion bubble oscillations: Jour. Applied Physics, 27(10), 1152 - 1161.
[7] Landro, M., 1992, Modeling of GI gun signatures: Geophysics Prospecting, 40, 721 - 747.
[8] Langhammer, M. L., 1993, Experimental study of viscosity effects on air gun signatures: Geophysics, 58(12), 1801 - 1808.
[9] Laws, R. M., Hatton, L., and Haartsen, M., 1990, Computer modeling of clustered air guns: First Break, 18(9), 331 - 338.
[10] Liu, B., 2005, Numerical simulation of air-gun array and its application: Ma. D. Thesis, Ocean University of China.
[11] Prospereti, A., 1984, Bubble phenomena in sound fields: Ultrasonic, 22, 39 - 77.
[12] Schulze-Gattermann, R., 1972, Physical aspects of the “airpulser” as a seismic energy source: Geophysical Prospecting, 20, 155 - 192.
[13] Ziolkowski, A., 1970, A method for calculating the output pressure waveform from an air-gun: Geophys. J. R. Astr. Soc., 21, 137 - 161.
[14] Ziolkowski, A., .Parks, G., Hatton L., and Haugland, T., 1982, The signature of an air-gun array: Computation from near-field measurements including interactions: Geophysics, 47(10), 1413 - 1421.
[15] Ziolkowski, A., 1984, An air gun model which include heat transfer and bubble interaction: Geophysics, 59(11), 187 - 189.
[16] Ziolkowski, A., 1998, Measurement of air-gun bubble oscillations: Geophysics, 63(6), 2009 - 2024.
[1] 李皓,李国发,郭祥辉,孙夕平 ,王建富. 基于非稳态反演的气枪阵列子波方向性反褶积?[J]. 应用地球物理, 2019, 16(1): 124-132.
[2] 王风帆, 刘怀山. 实际气体状态下模拟气枪单枪激发信号研究[J]. 应用地球物理, 2014, 11(1): 80-88.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司