APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2010, Vol. 7 Issue (2): 143-148    DOI: 10.1007/s11770-010-0238-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
复杂地表条件下高斯波束叠前深度偏移
岳玉波1,李振春1,张平2,周学锋1,秦宁1
1. 中国石油大学(华东)地球资源与信息学院,山东青岛 266555
2. 中国石油勘探开发研究院西北分院,甘肃兰州 730020
Prestack Gaussian beam depth migration under complex surface conditions
Yue Yu-Bo1, Li Zhen-Chun1, Zhang Ping2, Zhou Xue-Feng1, and Qin Ning1
1. College of Earth Resources and Information, China University of Petroleum (East China), Qingdao 266555,China.
2. Northwest Geological institute, RIPED, PetroChina, Lanzhou 730000, China.
 全文: PDF (1077 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在复杂地表条件的区域,地震数据的采集和处理是一项极大的挑战。虽然可以通过静校正来消除起伏地表的影响,然而当地表高程以及近地表速度剧烈变化时,简单的垂直时移对地震波场造成的畸变会严重降低偏移成像的质量。基于射线的偏移方法可以直接在起伏地表面进行波场的延拓成像,是解决上述问题的有效手段。本文针对复杂地表条件下的高斯波束叠前深度偏移进行研究,对倾斜叠加公式进行修改,使之包含地表高程以及速度的信息,通过直接在复杂地表面进行平面波的合成,得到了一种具有更高成像精度的改进方法。首先简单介绍常规高斯波束偏移的基本原理和计算流程,并以此为基础,给出复杂地表条件下高斯波束偏移原有的实现方法以及本文的改进方法,最后通过模型和实际资料的试算验证本文方法的有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
岳玉波
李振春
张平
周学锋
秦宁
关键词复杂地表   局部平面波   高斯波束偏移     
Abstract: In areas with a complex surface, the acquisition and processing of seismic data is a great challenge. Although elevation-static corrections can be used to eliminate the influences of topography, the distortions of seismic wavefields caused by simple vertical time shifts still greatly degrade the quality of the migrated images. Ray-based migration methods which can extrapolate and image the wavefields directly from the rugged topography are efficient ways to solve the problems mentioned above. In this paper, we carry out a study of prestack Gaussian beam depth migration under complex surface conditions. We modify the slant stack formula in order to contain the information of surface elevations and get an improved method with more accuracy by compositing local plane-wave components directly from the complex surface. First, we introduce the basic rules and computational procedures of conventional Gaussian beam migration. Then, we give the original method of Gaussian beam migration under complex surface conditions and an improved method in this paper. Finally, we validate the effectiveness of the improved method with trials of model and real data.
Key wordscomplex surface   local plane-wave   Gaussian beam migration   
收稿日期: 2009-12-31;
基金资助:

本研究由国家863专题(2007AA060502)和国家973课题(2007CB209605)资助。

引用本文:   
岳玉波,李振春,张平等. 复杂地表条件下高斯波束叠前深度偏移[J]. 应用地球物理, 2010, 7(2): 143-148.
YUE Yu-Bo,LI Zhen-Chun,ZHANG Ping et al. Prestack Gaussian beam depth migration under complex surface conditions[J]. APPLIED GEOPHYSICS, 2010, 7(2): 143-148.
 
[1] Beasley, C., and Lynn, W., 1992, The zero velocity layer: Geophysics, 57(11), 1435 - 1443.
[2] Berryhill, J. R., 1979, Wave-equation datuming: Geophysics, 44(8), 1329 - 1341.
[3] Wave-equation datuming before stack: Geophysics, 49(11), 2064 - 2066.
[4] Bevc, D., 1997, Flooding the topography: Wave-equation datuming of land data with rugged acquisition topography: Geophysics, 62(5), 1558 - 1569.
[5] Gray, S.H., 2005, Gaussian beam migration of common-shot records: Geophysics, 70(4), S71 - S77.
[6] -2009, True-amplitude Gaussian-beam migration: Geophysics, 74(2), S11 - S23.
[7] Gray, S.H., and Bleistein, N., 2009, True-amplitude Gaussian-beam migration: Geophysics, 74(2), S11 - S23.
[8] Gray, S.H., and Marfurt, K.J., 1995, Migration from topography: Improving the near-surface image: Canadian Journal of Exploration Geophysics, 31(1-2), 18 - 24.
[9] He, Y., and Wang, H.Z., 2002, Pre-stack wave equation depth migration for irregular topography: Progress in Exploration Geophysics (in Chinese): 25(3), 13 - 19.
[10] Hill, N. R., 1990, Gaussian beam migration: Geophysics, 55(11), 1416 - 1428.
[11] Prestack Gaussian-beam depth migration: Geophysics, 66(4), 1240 - 1250.
[12] Jager, C., Hertweck, T., and Spiner, M., 2003, True-amplitude Kirchhoff migration from topograpphy: 73th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 909 - 913.
[13] Nowack, R.L., Sen, M.K., and Stoffa, P.L., 2003, Gaussian beam migration for sparse common-shot and common-receiver data: 73th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1114 - 1117.
[14] Reshef, M., 1991, Depth migration from irregular surface with the depth extrapolation methods: Geophysics, 56(1): 119 - 122.
[15] Schneider, W.A., Phillip, L.D., and Paal, E.F., 1995, Wave-equation velocity replacement of the low-velocity layer for overthrust-belt data: Geophysics, 60(2), 573 - 579.
[16] Shragge, J., and Sava, P., 2005, Wave-equation migration from topography: 75th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1842 - 1846.
[17] Wiggins, J. W., 1984, Kirchhoff integral extrapolation and migration of nonplanar data: Geophysics, 49(8), 1239 - 1248.
[18] Yang, K., Wang, H.Z., and Ma, Z.T., 1999, Wave equation datuming from irregular surfaces using finite difference scheme: 69th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1842 - 1846.
[19] Yilmaz, W., and Lucas, D., 1986, Pre-stack layer replacement: Geophysics, 51(7), 1355 - 1369.
[20] Zhu, T.F., Gray, S.H., and Wang, D.L., 2007, Prestack Gaussian-beam depth migration in anisotropic media: Geophysics, 72(3), S133 - S138.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司