用GPU提速地震资料单程波有限差分叠前深度偏移
刘国峰1,2 ,孟小红1 ,刘洪2
1.中国地质大学地球探测与信息技术教育部重点实验室,北京,100083;
2.中国科学院地质与地球物理研究所,北京,100029
Accelerating finite difference wavefi eld-continuation depth migration by GPU*
Liu Guo-Feng1,2 , Meng Xiao-Hong1 , and Liu Hong2
1. Key Laboratory of Geo-detection (China University of Geosciences, Beijing), Ministry of Education, Beijing 100083, China.
2. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.
摘要 目前,叠前深度偏移计算在硬件的选择上主要是大规模的计算机集群,其需要庞大的占地面积和电能消耗。本文介绍了一种新的GPU 计算架构来辅助CPU 进行偏移计算,并以有限差分波动方程深度偏移为例,重点介绍GPU 编程模型和三个重要的程序优化环节:内存优化,线程结构优化和指令优化,同时阐述了衡量GPU 程序优化程度的方法。应用2D和3D 数据对本文深度偏移进行了测试,测试结果表明,应用具有通用功能的GPU 进行深度偏移计算,可以大幅度提高计算效率,相比与AMD 2.5 GHz 的CPU 计算,计算效率可提高35倍以上。
关键词 : 波场递推深度偏移
有限差分
GPU
计算效率
Abstract :
The most popular hardware used for parallel depth migration is the PC-Cluster but its application is limited due to large space occupation and high power consumption. In this paper, we introduce a new hardware architecture, based on which the fi nite difference (FD) wavefield-continuation depth migration can be conducted using the Graphics Processing Unit (GPU) as a CPU coprocessor. We demonstrate the program module and three key optimization steps for implementing FD depth migration: memory, thread structure, and instruction optimizations and consider evaluation methods for the amount of optimization. 2D and 3D models are used to test depth migration on the GPU. The tested results show that the depth migration computational efficiency greatly increased using the general-purpose GPU, increasing by at least 25 times compared to the AMD 2.5 GHz CPU.
Key words : Wavefield-continuation depth migration finite difference Graphic Processing Unit effi ciency
收稿日期: 2011-02-19;
基金资助: 本项目由国家自然科学基金 (Nos.41104083,No.40804024) 和高校科研业务费 (No, 2011YYL022) 资助。
引用本文:
刘国峰,孟小红,刘洪. 用GPU提速地震资料单程波有限差分叠前深度偏移[J]. 应用地球物理, 2012, 9(1): 41-48.
LIU Guo-Feng,MENG Xiao-Hong,LIU Hong. Accelerating finite difference wavefi eld-continuation depth migration by GPU*[J]. APPLIED GEOPHYSICS, 2012, 9(1): 41-48.
[1]
Biondi, B., 2006, 3D seismic imaging: Society of Exploration Geophysicists, Tulsa.
[2]
Biondi, B., and Palacharla., G., 1996, 3-D prestack migration of common-azimuth data: Geophysics, 61,1822 - 1832.
[3]
Claerbout, J. F., 1971, Toward a unified theory of reflector mapping: Geophysics, 36, 467 - 481.
[4]
Claerbout, J. F., 1985, Imaging the earth’s interior: Blackwell Scientific Publications, USA.
[5]
Gazdag, J., 1978, Wave equation migration with the phase shift method: Geophysics, 43, 1342 - 1351.
[6]
Gazdag, J., and Sguazzero, P., 1984, Migration of seismic data by phase-shift plus interpolation: Geophysics, 49,
[7]
4 - 131.
[8]
Hale, D., 1991, 3-D depth migration via McClellan transformation: Geophyscis, 56, 1778 - 1785.
[9]
Lee, M., and Suh, S., 1985, Optimization of one-way equation: Geophysics, 50, 1634 - 1637.
[10]
Li, Z., 1991, Compensating finite-difference errors in 3-D migration and modeling: Geophysics, 56, 1650 - 1660.
[11]
Liu, H., Yuan, J. H., Chen, J. B., Shou, H., 2007, Large step wavefield-continuation depth migration: Chinese Journal
[12]
of Geophysics (in Chinese), 49(6), 1779 - 1793.
[13]
Liu, G. F., Liu, H., Li, B., Tong, X, L., and Liu, Q., Method of prestack time migration of seismic data of
[14]
mountainous regions and its GPU implementation: Chinese Journal of Geophysics (in Chinese), 51(12),
[15]
01 - 3108.
[16]
Ma, Z. T., 1982, Finite-difference migration with higherorder approximation: Oil Geophysical Prospecting (in
[17]
Chinese), 17, 6 - 15.
[18]
Morton, S. A., and Ober, C. C., 1998, Faster shot record migration using phase encoding: 68th Ann. Internat.
[19]
Mtg., Soc. Expl. Geophys., Expanded Abstract, 1131 - 1134.
[20]
[21]
Operto, M. S., Xu, S., and Lambaré, G., 2000, Can we quantitatively image complex structures with rays?:
[22]
Geophysics, 65, 1223 - 1238.
[23]
Ristow, D., and Ruhl, T., 1994, Fourier finite-difference migration: Geophysics, 59, 1881-1893.
[24]
Stolt, R. H., 1978, Migration by Fourier transform: Geophysics, 43, 23 - 48.
[25]
Stoffa, P. L., Fokkema, J. T., de Luna Freire, R. M., and Kessinger, W. P., 1990, Split-step Fourier migration:
[26]
Geophysics, 55, 410 - 421.
[27]
Shi, X. H., Li, C., Wang, S. H., Wang, X., 2010, Computing prestack Kirchhoff time migration on general purpose
[28]
GPU: Computers and Geosciences, doi:10.1016/ j.cageo.2010.10.014.
[29]
Temme, P., 1984, A comparison of common-midpoint single-shot and plane-wave depth migration: Geophysics,
[30]
, 1896 - 1907.
[31]
Wang, X., Gao, X., and Yao, Z. X., 2010, Accelerating POCS interpolation of 3D irregular seismic data with
[32]
graphics processing units: Computers and Geosciences, 36, 1292 - 1300.
[33]
Xie, X. B., and Wu, R. S., 1999, Improving the wide angle accuracy of the screen propagator for elastic
[34]
wave propagation: 69th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1863 - 1866.
[35]
Yilmaz, O., 1987,Seismic Data Processing: Society of Exploration Geophysicists, Tulsa
[1]
侯振隆,黄大年,王恩德,程浩. 基于多级混合并行算法的重力梯度数据三维密度反演研究 [J]. 应用地球物理, 2019, 16(2): 141-153.
[2]
刘国峰,孟小红,禹振江,刘定进. 多GPU TTI 介质逆时偏移* [J]. 应用地球物理, 2019, 16(1): 61-69.
[3]
成景旺,范娜,张友源,吕晓春. 基于贴体旋转交错网格的起伏地表地震波有限差分数值模拟 [J]. 应用地球物理, 2018, 15(3-4): 420-431.
[4]
曹雪砷,陈浩,李平,贺洪斌,周吟秋,王秀明. 基于分段线性调频的宽带偶极子声源的测井方法研究 [J]. 应用地球物理, 2018, 15(2): 197-207.
[5]
任英俊,黄建平,雍鹏,刘梦丽,崔超,杨明伟. 窗函数交错网格有限差分算子及其优化方法 [J]. 应用地球物理, 2018, 15(2): 253-260.
[6]
王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究 [J]. 应用地球物理, 2017, 14(4): 590-605.
[7]
方刚,巴晶,刘欣欣,祝堃,刘国昌. 基于时间辛格式的傅里叶有限差分地震波场正演 [J]. 应用地球物理, 2017, 14(2): 258-269.
[8]
王泰涵,黄大年,马国庆,孟兆海,李野. 改进的预处理共轭梯度快速算法在三维重力梯度数据反演中的应用 [J]. 应用地球物理, 2017, 14(2): 301-313.
[9]
张煜,平萍,张双喜. 孔隙介质中面波有限差分模拟及应力镜像条件 [J]. 应用地球物理, 2017, 14(1): 105-114.
[10]
张建敏,何兵寿,唐怀谷. 三维TTI介质中的纯准P波方程及求解方法 [J]. 应用地球物理, 2017, 14(1): 125-132.
[11]
陈辉,邓居智,尹敏,殷长春,汤文武. 直流电阻率法三维正演的聚集代数多重网格算法研究 [J]. 应用地球物理, 2017, 14(1): 154-164.
[12]
孟庆鑫,胡祥云,潘和平,周峰. 地-井瞬变电磁多分量响应数值分析 [J]. 应用地球物理, 2017, 14(1): 175-186.
[13]
陶蓓,陈德华,何晓,王秀明. 界面不规则性对套后超声波成像测井响应影响的模拟研究 [J]. 应用地球物理, 2016, 13(4): 683-688.
[14]
常江浩,于景邨,刘志新. 煤矿老空水全空间瞬变电磁响应三维数值模拟及应用 [J]. 应用地球物理, 2016, 13(3): 539-552.
[15]
王涛,谭捍东,李志强,王堃鹏,胡志明,张兴东. ZTEM三维有限差分数值模拟算法及响应特征研究 [J]. 应用地球物理, 2016, 13(3): 553-560.