APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (2): 195-204    DOI: 10.1007/s11770-017-0619-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
多类型断层条件下的复杂地层曲面的重构方法
邓世武1,贾雨1,姚兴苗2,刘致宁2
1. 成都理工大学核技术与自动化学院,成都 610059
2. 电子科技大学资源与环境学院,成都 611731
A method of reconstructing complex stratigraphic surfaces with multitype fault constraints
Deng Shi-Wu1, Jia Yu1, Yao Xing-Miao2, and Liu Zhi-Ning2
1. School of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China.
2. School of Resources and Environment, University of Electronic and Technology of China, Chengdu 611731, China.
 全文: PDF (915 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 复杂地层曲面构建可广泛应用于石油勘探、地质建模、地质构造分析等领域中,也是这些领域数据可视化和可视分析的重要基础。现有方法在多种类型断层处理、曲面光滑性等方面存在不足。为解决地层数据分布不规则性带来的曲面光滑性问题,本文引入几何偏微分方程的曲面造型方法开展地层曲面构建;针对多种类型复杂断层存在情况下的曲面构建问题,提出三维空间与二维平面的投影互换算法,给出了基于几何偏微分方程的多种形式断层的统一处理方法;针对复杂地层曲面构建问题,建立了相应几何偏微分方程,给出演化求解算法。实际地层数据的空间曲面构建验证了本文方法计算效率高、能处理不规则的数据分布,同时能对存在断层尤其是逆掩断层的地层面进行曲面恢复。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词偏微分方程   曲面重构   插值   断层   网格剖分     
Abstract: The construction of complex stratigraphic surfaces is widely employed in many fields, such as petroleum exploration, geological modeling, and geological structure analysis. It also serves as an important foundation for data visualization and visual analysis in these fields. The existing surface construction methods have several deficiencies and face various difficulties, such as the presence of multitype faults and roughness of resulting surfaces. In this paper, a surface modeling method that uses geometric partial differential equations (PDEs) is introduced for the construction of stratigraphic surfaces. It effectively solves the problem of surface roughness caused by the irregularity of stratigraphic data distribution. To cope with the presence of multitype complex faults, a two-way projection algorithm between three-dimensional space and a two-dimensional plane is proposed. Using this algorithm, a unified method based on geometric PDEs is developed for dealing with multitype faults. Moreover, the corresponding geometric PDE is derived, and an algorithm based on an evolutionary solution is developed. The algorithm proposed for constructing spatial surfaces with real data verifies its computational efficiency and its ability to handle irregular data distribution. In particular, it can reconstruct faulty surfaces, especially those with overthrust faults.
Key wordsPartial differential equation   surface reconstruction   interpolation   fault   meshing   
收稿日期: 2016-08-17;
基金资助:

本研究由国家自然科学基金(编号:U1562218)资助。

引用本文:   
. 多类型断层条件下的复杂地层曲面的重构方法[J]. 应用地球物理, 2017, 14(2): 195-204.
. A method of reconstructing complex stratigraphic surfaces with multitype fault constraints[J]. APPLIED GEOPHYSICS, 2017, 14(2): 195-204.
 
[1] Cai, Q., Yang, Q., and Chen, Q. M., 2004, Conforming delaunay triangulation for geological structure with overlapping domains: Journal of Computer-Aided Design & Computer Graphics, 16(6), 766−771.
[2] Carmo M. P., 1994, Differential geometry of surfaces: Differential Forms and Applications, 77−98.
[3] Du, H., and Qin, H., 2007, Free-form geometric modeling by integrating parametric and implicit PDEs: IEEE Trans: The Visual Computer, 13(3), 549−561.
[4] Aurenhammer, F, 1991, Voronoi diagrams—a survey of a fundamental geometric data structure: ACM Computing Surveys (CSUR), 23(3), 345-405.
[5] Frank, T., Tertois, A. L., and Mallet, J. L., 2007, 3D-reconstruction of complex geological interfaces from irregularly distributed and noisy point data: Computers & Geosciences, 33(7), 932−943.
[6] Farshbaf, P. S., Khatib, M. M., and Nazari, H., 2016, Solid meshing of 3D geological model in finite element analysis: a case study of east azerbaijan, NW Iran: Modeling Earth Systems and Environment, 2(1), 1−7.
[7] Bloor, M., and Wilson, M., 1989, Generating blend surfaces using partial differential equations: Computer Aided Design, 21(3), 165−171.
[8] Frey, P. J., Borouchaki, H., and George, P. L., 1998, 3D Delaunay mesh generation coupled with an advancing-front approach: Computer Methods in Applied Mechanics and Engineering, 157(1-2), 115−131.
[9] Cai, Q., Yang, Q., and Chen, Q. M., 2004, Conforming delaunay triangulation for geological structure with overlapping domains: Journal of Computer-Aided Design & Computer Graphics, 16(6), 766−771.
[10] Carmo M. P., 1994, Differential geometry of surfaces: Differential Forms and Applications, 77−98.
[11] Hillier, M. J, Schetselaar, E. M., de Kemp, E. A., et al. 2014, Three-dimensional modelling of geological surfaces using generalized interpolation with radial basis functions: Mathematical Geosciences, 46(8), 931−953.
[12] Jia, Y., Deng, S. W., and Yao, X., 2015, Kriging interpolation algorithm based on constraint particle swarm optimization: Journal of Chengdu University of Technology, 42(1), 104−109.
[13] Kuwert, E., and Schätzle, R., 2001, The Willmore flow with small initial energy: J. Diff. Geom., 57(3), 409−441.
[14] Du, H., and Qin, H., 2007, Free-form geometric modeling by integrating parametric and implicit PDEs: IEEE Trans: The Visual Computer, 13(3), 549−561.
[15] Frank, T., Tertois, A. L., and Mallet, J. L., 2007, 3D-reconstruction of complex geological interfaces from irregularly distributed and noisy point data: Computers & Geosciences, 33(7), 932−943.
[16] Farshbaf, P. S., Khatib, M. M., and Nazari, H., 2016, Solid meshing of 3D geological model in finite element analysis: a case study of east azerbaijan, NW Iran: Modeling Earth Systems and Environment, 2(1), 1−7.
[17] Frey, P. J., Borouchaki, H., and George, P. L., 1998, 3D Delaunay mesh generation coupled with an advancing-front approach: Computer Methods in Applied Mechanics and Engineering, 157(1-2), 115−131.
[18] Li, M. C., and Miu, Z., 2011, 3D interpolation-approximation fitting construction method for complex geological surfaces: Engineering Science, 13(12), 103−107.
[19] Hillier, M. J, Schetselaar, E. M., de Kemp, E. A., et al. 2014, Three-dimensional modelling of geological surfaces using generalized interpolation with radial basis functions: Mathematical Geosciences, 46(8), 931−953.
[20] Jia, Y., Deng, S. W., and Yao, X., 2015, Kriging interpolation algorithm based on constraint particle swarm optimization: Journal of Chengdu University of Technology, 42(1), 104−109.
[21] Kuwert, E., and Schätzle, R., 2001, The Willmore flow with small initial energy: J. Diff. Geom., 57(3), 409−441.
[22] Liu, S., Hu, X., Xi, Y., 2015, 2D inverse modeling for potential fields on rugged observation surface using constrained delaunay triangulation: Computers & Geosciences, 76, 18−30.
[23] Liu, D., Xu, G., and Zhang, Q., 2008, A discrete scheme of Laplace-Beltrami operator and its convergence over quadrilateral meshes: Computers and Mathematics with Applications, 55(6), 1081−1093
[24] Li, M. C., and Miu, Z., 2011, 3D interpolation-approximation fitting construction method for complex geological surfaces: Engineering Science, 13(12), 103−107.
[25] Liu, S., Hu, X., Xi, Y., 2015, 2D inverse modeling for potential fields on rugged observation surface using constrained delaunay triangulation: Computers & Geosciences, 76, 18−30.
[26] Mallet, J. L., 1989, Discrete smooth interpolation: ACM Transactions on Graphics, 8(2), 121−144.
[27] Marghany, M., 2012, Fuzzy B-spline algorithm for 3-D lineament reconstruction: Int. J. Phys. Sci., 7(15), 2294−301.
[28] Liu, D., Xu, G., and Zhang, Q., 2008, A discrete scheme of Laplace-Beltrami operator and its convergence over quadrilateral meshes: Computers and Mathematics with Applications, 55(6), 1081−1093
[29] Meyer, M., and Desbrun, M., Schroder, P., 2002, Discrete differential-geometry operators for triangulated 2-manifolds: Proceedings of Visual Mathematics’02. Berlin, Germany.
[30] Mallet, J. L., 1989, Discrete smooth interpolation: ACM Transactions on Graphics, 8(2), 121−144.
[31] Marghany, M., 2012, Fuzzy B-spline algorithm for 3-D lineament reconstruction: Int. J. Phys. Sci., 7(15), 2294−301.
[32] Meyer, M., and Desbrun, M., Schroder, P., 2002, Discrete differential-geometry operators for triangulated 2-manifolds: Proceedings of Visual Mathematics’02. Berlin, Germany.
[33] Ma, L., and Zhu, X., 1998, Application of PDE method to free form surface design: Chinese Journal of Computers 21(3), 357−362.
[34] Ma, L., and Zhu, X., 1998, Application of PDE method to free form surface design: Chinese Journal of Computers 21(3), 357−362.
[35] Pellerin, J., Lévy, B., and Caumon, G., 2014, Automatic surface remeshing of 3D structural models at specified resolution: A method based on Voronoi diagrams: Computers & Geosciences, 62, 103−116.
[36] Pellerin, J., Lévy, B., and Caumon, G., 2014, Automatic surface remeshing of 3D structural models at specified resolution: A method based on Voronoi diagrams: Computers & Geosciences, 62, 103−116.
[37] Plummer, C. C., McGeary, D., and Carlson D. H., 1991, Physical geology: Wm. C. Brown.
[38] Plummer, C. C., McGeary, D., and Carlson D. H., 1991, Physical geology: Wm. C. Brown.
[39] Schneider, R., and Kobbelt, L., 2001, Geometric fairing of irregular meshes for free-form surface design: Computer Aided Geometric Design, 18(4), 359−379.
[40] Schneider, R., and Kobbelt, L., 2001, Geometric fairing of irregular meshes for free-form surface design: Computer Aided Geometric Design, 18(4), 359−379.
[41] White, B., 2002, Evolution of curves and surfaces by mean curvature. In: Proceedings of the International Congress of Mathematicians, vol. I, Beijing. 525−538.
[42] Xu, G., Pan, Q., Bajaj, C., 2006, Discrete surface modeling using partial differential equations: Computer Aided Geometric Design, 23(2), 125−145.
[43] Yu, Z. W., 1987, A New Method for interpolating geological surface: Journal of China University of Mining & Technology, 16(4), 69−76.
[44] Yan, H. W., and Wu, J. P., 2012, Research on genetic algorithm kriging optimized by weight least square: Computer Technology and Development, 22(3), 92−95.
[45] Yao, X., Wang, Q., and Liu, Z., 2015, Fast 3D kriging interpolation using delaunay tetrahedron with CUDA-enabled GPU: 85th Annual International Meeting, SEG, Expanded Abstracts, 1739−1743.
[46] Yao, X., Luo, C., Hu, G., et al., 2014, A method of geological surface reconstruction with reverse fault, 84th Annual International Meeting, SEG, Expanded Abstracts, 1559−1564.
[47] White, B., 2002, Evolution of curves and surfaces by mean curvature. In: Proceedings of the International Congress of Mathematicians, vol. I, Beijing. 525−538.
[48] Zhong, D. H., Li, M. C., and Song, L. G., 2006, Enhanced NURBS modeling and visualization for large 3D geoengineering applications: an example from the Jinping first-level hydropower engineering project, China: Computers & Geosciences, 32(9), 1270−1282.
[49] Xu, G., Pan, Q., Bajaj, C., 2006, Discrete surface modeling using partial differential equations: Computer Aided Geometric Design, 23(2), 125−145.
[50] Zeng, J., 2005, Some Questions of partial differential equation method in surface modeling: Master Thesis, Dalian University of Technology.
[51] Yu, Z. W., 1987, A New Method for interpolating geological surface: Journal of China University of Mining & Technology, 16(4), 69−76.
[52] Yan, H. W., and Wu, J. P., 2012, Research on genetic algorithm kriging optimized by weight least square: Computer Technology and Development, 22(3), 92−95.
[53] Yao, X., Wang, Q., and Liu, Z., 2015, Fast 3D kriging interpolation using delaunay tetrahedron with CUDA-enabled GPU: 85th Annual International Meeting, SEG, Expanded Abstracts, 1739−1743.
[54] Yao, X., Luo, C., Hu, G., et al., 2014, A method of geological surface reconstruction with reverse fault, 84th Annual International Meeting, SEG, Expanded Abstracts, 1559−1564.
[55] Zhong, D. H., Li, M. C., and Song, L. G., 2006, Enhanced NURBS modeling and visualization for large 3D geoengineering applications: an example from the Jinping first-level hydropower engineering project, China: Computers & Geosciences, 32(9), 1270−1282.
[56] Zeng, J., 2005, Some Questions of partial differential equation method in surface modeling: Master Thesis, Dalian University of Technology.
[57] Zheng, C., 2005, Some research on the generating and manipulating of PDE transition surface: Master Thesis, Dalian University of Technology.
[58] Zhao, H. X., and Xu, G., 2006, Triangular surface mesh fairing via Gaussian curvature flow: Journal of Computational and Applied Mathematics, 195(1), 300−311.
[59] Zinck, G, Donias, M, Daniel, J., et al., 2013, Fast seismic horizon reconstruction based on local dip transformation: Journal of Applied Geophysics, 96, 11−18.
[60] Zheng, C., 2005, Some research on the generating and manipulating of PDE transition surface: Master Thesis, Dalian University of Technology.
[61] Zinck, G., Donias, M., and Guillon, S., 2014, Discontinuous seismic horizon reconstruction based on local dip transformation: 2014 IEEE International Conference on Image Processing (ICIP), 5856−5860.
[1] 胡隽,曹俊兴,何晓燕,王权锋,徐彬. 水力压裂对断层应力场扰动的数值模拟[J]. 应用地球物理, 2018, 15(3-4): 367-381.
[2] 姬战怀,严胜刚. 改进的Gabor小波变换的特性在地震信号处理和解释中的应用[J]. 应用地球物理, 2017, 14(4): 529-542.
[3] 尹陈. 基于微震特性的断层检测技术[J]. 应用地球物理, 2017, 14(3): 363-371.
[4] 黄鑫,殷长春,曹晓月,刘云鹤,张博,蔡晶. 基于谱元法三维航空电磁电各向异性模拟及识别研究[J]. 应用地球物理, 2017, 14(3): 419-430.
[5] 闫建平,何旭,耿斌,胡钦红,冯春珍,寇小攀,李兴文. 核磁共振T2谱多重分形特征及其在孔隙结构评价中的应用[J]. 应用地球物理, 2017, 14(2): 205-215.
[6] 李俊杰, 严家斌, 皇祥宇. 无网格法精度分析及在电磁法二维正演中的应用[J]. 应用地球物理, 2015, 12(4): 503-515.
[7] 杜启振, 张明强, 陈晓冉, 公绪飞, 郭成锋. 交错网格中基于波数域插值的波场分离方法研究[J]. 应用地球物理, 2014, 11(4): 437-446.
[8] 勾福岩, 刘财, 刘洋, 冯晅, 崔芳姿. 基于Bregman迭代的复杂地震波场稀疏域插值方法[J]. 应用地球物理, 2014, 11(3): 277-288.
[9] 曹云梦, 李志伟, 韦建超, 占文俊, 朱建军, 汪长城. 一种求解地球物理参数各向异性的新方法——单位步长变异增量法[J]. 应用地球物理, 2014, 11(3): 340-349.
[10] 窦喜英, 韩立国, 王恩利, 董雪华, 杨庆, 鄢高韩. 一种基于特征值相干结果直方图均衡化的裂缝增强方法[J]. 应用地球物理, 2014, 11(2): 179-185.
[11] 邹友龙, 胡法龙, 周灿灿, 李潮流, 李长喜, Keh-Jim Dunn. 径向基函数插值方法分析[J]. 应用地球物理, 2013, 10(4): 397-410.
[12] 陈向斌, 吕庆田, 严加永. 斑岩铜矿床及控矿构造的3D电性结构——以沙溪铜矿为例[J]. 应用地球物理, 2012, 9(3): 270-278.
[13] 陈学华, 杨威, 贺振华, 钟文丽, 文晓涛. 三维多尺度体曲率的算法及应用[J]. 应用地球物理, 2012, 9(1): 65-72.
[14] 郭书娟, 李振春, 仝兆岐, 马方正, 刘建辉. 基于表层多次波数据的近道地震数据插值方法研究[J]. 应用地球物理, 2011, 8(3): 225-232.
[15] 王季, 陆文凯. 基于局部直方图规定化的相干体增强[J]. 应用地球物理, 2010, 7(3): 249-256.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司