APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (4): 667-682    DOI: 10.1007/s11770-016-0583-8
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
超声岩石物理实验尾波观测中边界反射的影响分析
付博烨1,2,符力耘1,魏伟1,张艳1
1. 中国科学院油气资源研究重点实验室,中国科学院地质与地球物理研究所,北京 100029
2. 中国科学院大学,北京 100049
Boundary-reflected waves and ultrasonic coda waves in rock physics experiments
Fu Bo-Ye1,2, Fu Li-Yun1, Wei Wei1, and Zhang Yan1
1. Key Laboratory of Petroleum Resource Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.
2. University of Chinese Academy of Sciences, Beijing 100049, China.
 全文: PDF (1887 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 超声尾波是研究高频散射问题的最佳数据,近年来得到广泛应用,然而岩石物理实验证实超声尾波受到岩芯边界反射的严重干涉,有必要厘清在实验观测中,直达波后各续至波组成分及岩芯边界反射的影响。本文利用1MHz的超声纵波换能器,分别对无吸收衰减标准铝样和较强衰减的页岩岩芯进行实验,同时利用旋转交错网格有限差分法模拟实验观测波场, 以便充分了解超声岩石物理实验中各续至波组的性质和来源。通过对比铝样观测波场及其模拟波场,定量分析了侧面和对穿不同位置接收的波场特征,侧边界反射对超声尾波时段的干涉特征,以及样品几何尺寸对尾波观测的影响。结合页岩岩芯超声实验数据的分析表明: 提高岩样径长比,可延迟侧边界反射的干涉作用,有效降低对超声尾波的影响。干涉超声尾波的主要边界反射波为PP波,其次为PS波、PPP波和PPS波,这些震相在超声尾波时段合成为具有陷频和频散特征的波组, 其幅值达到直达波幅值的30%。页岩岩芯超声实验表明,岩样介质对高频能量的吸收和散射衰减作用极大地减弱了岩样侧边界反射对超声尾波时段的干涉影响。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词岩石物理实验   边界反射波   散射尾波   数值模拟     
Abstract: Ultrasonic coda waves are widely used to study high-frequency scattering. However, ultrasonic coda waves are strongly affected by interference from by boundary-reflected waves. To understand the effect of boundary-reflected waves, we performed ultrasonic experiments using aluminum and shale samples, and the rotating staggered-mesh finite-difference method to simulate the wavefield. We analyzed the wavefield characteristics at the different receiving points and the interference characteristics of the boundary-reflected waves with the ultrasonic coda wave, and the effect of sample geometry on the ultrasonic coda waves. The increase in the aspect ratio of the samples delays the interference effect of the laterally reflected waves and reduces the effect on the ultrasonic coda waves. The main waves interfering with the ultrasonic coda waves are laterally reflected PP-, PS-, PPP-, and PPS-waves. The scattering and attenuation of the high-frequency energy in actual rocks can weaken the interference of laterally reflected waves with the ultrasonic coda waves.
Key wordsRock physics   boundary-reflected waves   coda wave, interference   numerical simulation   
收稿日期: 2016-05-18;
基金资助:

本研究由中国科学院战略性先导科技专项B类(编号:XDB10010400)资助。

引用本文:   
. 超声岩石物理实验尾波观测中边界反射的影响分析[J]. 应用地球物理, 2016, 13(4): 667-682.
. Boundary-reflected waves and ultrasonic coda waves in rock physics experiments[J]. APPLIED GEOPHYSICS, 2016, 13(4): 667-682.
 
[1] ASTM Standard 4543, 2002, Practice for Preparing Rock Core Specimens and Determining Dimensional Shape Tolerances, American Society for the Testing of Materials: Philadelphia, PA.
[2] Basu, A., and Aydin, A., 2006, Evaluation of ultrasonic testing in rock material characterization: Geotechnical Testing Journal, 29(2), 117−125.
[3] Birks, A. S., Green, R. E., and McIntire, P., 1991, Ultrasonic Testing: in Nondestructive Testing Handbook, Vol. 7, American Society for Nondestructive Testing, Columbus, OH, USA.
[4] Bieniawski, Z. T., and Hawkes, I., 1978, Suggested methods for determining tensile strength of rock materials - 1. suggested method for determining direct tensile strength: International Journal of Rock Mechanics & Mining Sciences, 15(3), 99−103.
[5] Cherry, J. T., 1962, The azimuthal and polar radiation patterns obtained from a horizontal stress applied at the surface of an elastic half space: Bulletin of the Seismological Society of America, 52(1), 27−36.
[6] Deng, J., Wang, S., and Han, D., 2009, The velocity and attenuation anisotropy of shale at ultrasonic frequency: Journal of Geophysics & Engineering, 6(3), 269−278.
[7] Franklin, J. A., and Dusseault, M. B., 1991, Rock engineering applications: McGraw-Hill, Incorporated, New York, USA, 431p.
[8] Gladwin, M. T., and Stacey, F. D., 1974, Anelastic degradation of acoustic pulses in rock: Physics of the Earth & Planetary Interiors, 8(4), 332−336.
[9] Grêt, A., Snieder, R., and Scales, J., 2006, Time-lapse monitoring of rock properties with coda wave interferometry: Journal of Geophysical Research Atmospheres, 111(B3), 1581−1600.
[10] Guo, M., and Fu, L., 2007, Stress associated coda attenuation from ultrasonic waveform measurements: Geophysical Research Letters, 34(9), 252−254.
[11] Guo, M., Fu, L., and Jing, B., 2009, Comparison of stress-associated coda attenuation and intrinsic attenuation from ultrasonic measurements: Geophysical Journal International, 178(1), 447−456.
[12] Saenger, E. H., and Bohlen, T., 2004, Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid: Geophysics, 69(2), 583−591.
[13] Schmerr, L. W., and Sedov, A., 1989, An elastodynamic model for compressional and shear wave transducers: Journal of the Acoustical Society of America, 86(5), 1988−1999.
[14] Sondergeld, C. H., and Rai, C. S., 1987, Laboratory observations of shear wave propagation in anisotropic media: Leading Edge, 11(2), 918−918.
[15] Song, J. G., Gong, Y. L., and Li, S., 2015, High-resolution frequency-domain radon transform and variable-depth streamer data deghosting: Applied Geophysics, 12(4), 564−572.
[16] Wei, W., and Fu, L. Y., 2014, Monte carlo simulation of stress-associated scattering attenuation from laboratory ultrasonic measurements: Bulletin of the Seismological Society of America, 104(2), 931−943.
[17] Wei, J. X., and Wang, C. Y., 2003, Study of s-wave test and measurement technique in laboratory: Oil Geophysical Prospecting, 38(6), 630−635.
[18] Wu, R. S., and Aki, K., 1988a, Introduction: seismic wave scattering in three-dimensionally heterogeneous earth: Pure & Applied Geophysics, 128(1), 1−6.
[19] Wu, R. S., and Aki, K., 1988b, Multiple scattering and energy transfer of seismic waves—separation of scattering effect from intrinsic attenuation ii. application of the theory to Hindu Kush region: Pure & Applied Geophysics, 128(1), 49−80.
[20] Yong, A. N., and Wei, L. C., 2007, Experimental study on effective size of rock samples in the method of frequency-amplitude ratio: Journal of Oil & Gas Technology, 29(1), 48−51.
[21] Zhang, H., Thurber, C., and Rowe, C., 2003, Automatic P-wave arrival detection and picking with multiscale wavelet analysis for single-component recordings: Bulletin of the Seismological Society of America, 93(5), 1904−1912.
[22] Zhang, L. X., Fu, L. Y., and Pei, Z. L., 2010, Finite difference modeling of biot's poroelastic equations with unsplit eonvolutional pml and rotated staggered grid: Chinese Journal of Geophysics- Chinese Edition, 53(10), 2470−2483.
[23] Zhang, Y., Fu, L. Y., Zhang, L., Wei, W., and Guan, X., 2014, Finite difference modeling of ultrasonic propagation (coda waves) in digital porous cores with un-split convolutional pml and rotated staggered grid: Journal of Applied Geophysics, 104(5), 75−89.
[24] Zhubayev, A., Houben, M. E., Smeulders, D. M., and Barnhoorn, A., 2015, Ultrasonic velocity and attenuation anisotropy of shales, Whitby, United Kingdom: Geophysics, 81(1), D45−D56.
[25] Zhu, Z. Y., and Tang, X. M., 1992, Longitudinal wave and transverse wave radiation acoustic field directivity of transducer in semi-infinite solid medium: Technical Acoustics, (1), 47−51.
[1] 马汝鹏,巴晶,Carcione J. M. ,周欣,李帆. 致密油岩石纵波频散及衰减特征研究:实验观测及理论模拟*[J]. 应用地球物理, 2019, 16(1): 36-49.
[2] 胡隽,曹俊兴,何晓燕,王权锋,徐彬. 水力压裂对断层应力场扰动的数值模拟[J]. 应用地球物理, 2018, 15(3-4): 367-381.
[3] 戴世坤,赵东东,张钱江,李昆,陈轻蕊,王旭龙. 基于泊松方程的空间波数混合域重力异常三维数值模拟[J]. 应用地球物理, 2018, 15(3-4): 513-523.
[4] 胡松,李军,郭洪波,王昌学. 水平井随钻电磁波测井与双侧向测井响应差异及其解释应用[J]. 应用地球物理, 2017, 14(3): 351-362.
[5] 杨思通,魏久传,程久龙,施龙青,文志杰. 煤巷三维槽波全波场数值模拟与波场特征分析[J]. 应用地球物理, 2016, 13(4): 621-630.
[6] 陶蓓,陈德华,何晓,王秀明. 界面不规则性对套后超声波成像测井响应影响的模拟研究[J]. 应用地球物理, 2016, 13(4): 683-688.
[7] 常江浩,于景邨,刘志新. 煤矿老空水全空间瞬变电磁响应三维数值模拟及应用[J]. 应用地球物理, 2016, 13(3): 539-552.
[8] 张钱江,戴世坤,陈龙伟,强建科,李昆,赵东东. 基于网格加密-收缩的2.5D直流电法有限元模拟[J]. 应用地球物理, 2016, 13(2): 257-266.
[9] 刘洋, 李向阳, 陈双全. 高精度双吸收边界条件在地震波场模拟中的应用[J]. 应用地球物理, 2015, 12(1): 111-119.
[10] Cho, Kwang-Hyun. 爆炸与天然地震的区别[J]. 应用地球物理, 2014, 11(4): 429-436.
[11] 尹成芳, 柯式镇, 许巍, 姜明, 张雷洁, 陶婕. 三维阵列侧向测井电极系设计及其响应模拟[J]. 应用地球物理, 2014, 11(2): 223-234.
[12] 何怡原, 张保平, 段玉婷, 薛承瑾, 闫鑫, 何川, 胡天跃. 水力压裂产生的地表和地下变形场数值模拟[J]. 应用地球物理, 2014, 11(1): 63-72.
[13] 赵建国, 史瑞其. 时域有限元弹性波模拟中的位移格式完全匹配层吸收边界[J]. 应用地球物理, 2013, 10(3): 323-336.
[14] 刘云, 王绪本, 王赟. 线源二维时间域瞬变电磁二次场数值模拟[J]. 应用地球物理, 2013, 10(2): 134-144.
[15] 常锁亮, 刘洋. 结合边界条件的截断高阶隐式有限差分方法[J]. 应用地球物理, 2013, 10(1): 53-62.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司