APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (4): 658-666    DOI: 10.1007/s11770-016-0587-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于Padé逼近的各向同性介质长偏移距动校正
宋汉杰1,2,张金海1,姚振兴1
1. 中国科学院地质与地球物理研究所,地球与行星物理重点实验室,北京 100029
2. 中国科学院大学,北京 100049
Normal moveout for long offset in isotropic media using the Padé approximation
Song Han-Jie1,2, Zhang Jin-Hai1, and Yao Zhen-Xing1
1. Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.
2. University of Chinese Academy of Sciences, Beijing 100049, China.
 全文: PDF (737 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 动校正对于长偏移距地震资料尤其是深层反射的地震资料十分重要。基于短偏移距假设的传统双曲动校正方法或者基于连分式展开的动校正方法在长偏移距会失效。本文基于Padé逼近提出了一种适合于各向同性介质的长偏移距动校正新方法。理论分析和数值实验结果表明:该方法在长偏移距的动校正效果明显优于其它已知的动校正方法。传统动校正方法在偏移距与深度比值为2时误差超过5ms,该比值为3时误差超过10ms。相比之下,[3, 3]阶Padé逼近动校正方法在偏移距与深度比值为3时的误差不超过5ms。在Cooper盆地Tirrawarra井数据合成的平层模型实验中,[3, 3]阶Padé逼近动校正方法的偏移距与深度比值有效范围是其他动校正方法的两倍以上。[7, 7]阶Padé逼近动校正方法的精度较[3, 3]阶Padé逼近具有更进一步的提升。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词Padé   逼近   长偏移距   动校正   各向同性     
Abstract: The normal moveout correction is important to long-offset observations, especially deep layers. For isotropic media, the conventional two-term approximation of the normal moveout function assumes a small offset-to-depth ratio and thus fails at large offset-to-depth ratios. We approximate the long-offset moveout using the Padé approximation. This method is superior to typical methods and flattens the seismic gathers over a wide range of offsets in multilayered media. For a four-layer model, traditional methods show traveltime errors of about 5 ms for offset-to-depth ratio of 2 and greater than 10 ms for offset-to-depth ratio of 3; in contrast, the maximum traveltime error for the [3, 3]-order Padé approximation is no more than 5 ms at offset-to-depth ratio of 3. For the Cooper Basin model, the maximum offset-to-depth ratio for the [3, 3]-order Padé approximation is typically double of those in typical methods. The [7, 7]-order Padé approximation performs better than the [3, 3]-order Padé approximation.
Key wordsPadé   approximation   long offset   normal moveout   isotropic medium   
收稿日期: 2016-05-10;
基金资助:

本研究由国家自然科学基金(编号:41130418和41374061)、国家重大专项(编号:2011ZX05008-006)和中国科学院青年创新促进会(编号:2012054)联合资助。

引用本文:   
. 基于Padé逼近的各向同性介质长偏移距动校正[J]. 应用地球物理, 2016, 13(4): 658-666.
. Normal moveout for long offset in isotropic media using the Padé approximation[J]. APPLIED GEOPHYSICS, 2016, 13(4): 658-666.
 
[1] Abbad, B., and Ursin, B., 2012, High-resolution bootstrapped differential semblance: Geophysics, 77(3), U39-U47.
[2] Al-Chalabi, M., 1973, Series approximation in velocity and travel time computations: Geophysical Prospecting, 21(4), 783-795.
[3] Al-Chalabi, M., 1974, An analysis of stacking, RMS, average and interval velocities over a horizontally layered ground: Geophysical Prospecting, 22(3), 458-475.
[4] Alkhalifah, T., 1997, Velocity analysis using nonhyperbolic moveout in transversely isotropic media: Geophysics, 62(6), 1839-1854.
[5] Alkhalifah, T., and Tsvankin, I., 1995, Velocity analysis for transversely isotropic media: Geophysics, 60(5), 1550-1566.
[6] Aptekarev, A. I., Buslaev, V. I., Martínez-Finkelshtein, A., Suetin, S.P., 2011, Padé approximants, continued fractions, and orthogonal polynomials: Russian Mathematical Surveys, 66(6), 1049-1131.
[7] Baker, G. A. Jr., 1975, Essentials of Padé approximants in theoretical physics: Academic Press, New York.
[8] Blias, E. A., 1982, Calculation of interval velocities for layered medium through hyperbolic travel time approximation: Soviet Geology and Geophysics, 4, 48-54.
[9] Blias, E., 2007, Long-spreadlength approximations to NMO function for a multi-layered subsurface: CSEG Recorder, 3, 36-42.
[10] Bolshih, C. F., 1956, Approximate model for the reflected wave travel time curve in multilayered media: Applied Geophysics (Book series in Russian), 15, 3-14.
[11] Castle, R. J., 1994, A theory of normal moveout: Geophysics, 59(6), 983-999.
[12] Causse, E., 2002, Seismic travel time approximations with high accuracy at all offsets: 64th EAGE Conference and Exhibition.
[13] Causse, E., 2004, Approximations of reflection traveltimes with high accuracy at all offsets: Journal of Geophysics and Engineering, 1(1), 28-45.
[14] Causse, E., Haugen, G. U., and Rommel, B. E., 2000, Large-offset approximation to seismic reflection traveltimes: Geophysical Prospecting, 48(4), 763-778.
[15] Cordier, J. P., 1985, Velocities in reflection seismology: Springer Science and Business Media.
[16] Choi, H., Byun, J., and Seol, S. J., 2010, Automatic velocity analysis using bootstrapped differential semblance and global search methods: Exploration Geophysics, 41(1), 31-39.
[17] Ding, F., Zhang, J. H., and Yao, Z. X., 2011, Optimized Chebyshev method for normal moveout of long-offset seismic data: Progress in Geophysics (in Chinese), 26(3), 836-842.
[18] Dix, C. H., 1955, Seismic velocities from surface measurements: Geophysics, 20(1), 68-86.
[19] Ghosh, S. K., and Kumar, P., 2002, Divergent and asymptotic nature of the time-offset Taner-Koehler series in reflection seismics: Geophysics, 67(6), 1913-1919.
[20] Gjøystdal, H., Reinhardsen, J. E., and Ursin, B., 1984, Travel time and wavefront curvature calculations in three-dimensional inhomogeneous layered media with curved interfaces: Geophysics, 49(9), 1466-1494.
[21] Gravestock, D. I., Hibburt, J. E., and Drexel, J. F., 1998, Petroleum geology of South Australia. Volume 4: Cooper Basin: Department of Primary Industries and Resources South Australia, Report Book.
[22] Grechka, V., and Tsvankin, I., 1998, Feasibility of nonhyperbolic moveout inversion in transversely isotropic media: Geophysics, 63(3), 957-969.
[23] Hake, H., Helbig, K., and Mesdag, C. S., 1984, Three-term Taylor series for t2-x2-curves of P- and S-waves over layered transversely isotropic ground: Geophysical Prospecting, 32(5), 828-850.
[24] Halpern, L., and Trefethen, L. N., 1988, Wide-angle one-way wave equations: The Journal of the Acoustical Society of America, 84(4), 1397-1404.
[25] Kaila, K. L., and Sain, K., 1994, Errors in RMS velocity and zerooffset two-way time as determined from wide-angle seismic reflection travel-times using truncated series: Journal of Seismic Exploration, 3(2), 173-188.
[26] Luo, S., and Hale, D., 2012, Velocity analysis using weighted semblance: Geophysics, 77(2), U15-U22.
[27] Malovichko, A. A., 1978, A new representation of the travel time curve of reflected waves in horizontally layered media: Applied Geophysics (Book series in Russian), 91(1), 47-53.
[28] Margrave, G. F., 2001, Numerical methods of exploration seismology with algorithms in Matlab: The University of Calgary, Calgary.
[29] May, B. T., and Straley, D. K., 1979, Higher-order moveout spectra: Geophysics, 44(7), 1193-1207.
[30] Michaelsen, B. H., 2002, Geochemical perspectives on the petroleum habitat of the Cooper and Eromanga Basins, central Australia: The University of Adelaide, Adelaide.
[31] Miller, R. D., 1992, Normal moveout stretch mute on shallow-reflection data: Geophysics, 57(11), 1502-1507.
[32] Noah, J. T., 1996, NMO stretch and subtle traps: The Leading Edge, 15(5), 345-347.
[33] Qadrouh, A. N., Carcione, J. M., Botelho, M. A. B., Harith, Z. Z. T., and Salime, A. M., 2014, On optimal NMO and generalised Dix equations for velocity determination and depth conversion: Journal of Applied Geophysics, 101, 136-141.
[34] Ross, C. P., 1997, AVO and nonhyperbolic moveout: a practical example: First Break, 62(6), 43-48.
[35] Sain, K., and Kaila, K. L., 1994, Inversion of wide-angle seismic reflection times with damped least squares: Geophysics, 59(11), 1735-1744.
[36] Shah, P. M., and Levin, F. K., 1973, Gross properties of time-distance curves: Geophysics, 38(4), 643-656.
[37] Shatilo, A., and Aminzadeh, F., 2000, Constant normal-moveout (CNMO) correction: a technique and test results: Geophysical Prospecting, 48(3), 473-488.
[38] Song, H. J., Gao, Y. J., Zhang, J. H., and Yao, Z. X., 2016, Long-offset moveout for VTI using Padé approximation: Geophysics, 81(5), C219-C227.
[39] Taner, M. T., and Koehler, F., 1969, Velocity spectra-digital computer derivation and applications of velocity functions: Geophysics, 34(6), 859-881.
[40] Taner, M. T., Treitel, S., and Al-Chalabi, M., 2005, A new travel time estimation method for horizontal strata: 75th Annual International Meeting, SEG, Expanded Abstracts, 2273-2276.
[41] Thore, P., de Bazelaire E., and Ray, M. P., 1994, The three-parameter equation: An efficient tool to enhance the stack: Geophysics, 59(2), 297-308.
[42] Tognarelli, A., Stucchi, E., Ravasio, A., and Mazzotti, A., 2013, High-resolution coherency functionals for velocity analysis: An application for subbasalt seismic exploration: Geophysics, 78(5), U53-U63.
[43] Tsvankin, I., and Thomsen, L., 1994, Nonhyperbolic reflection moveout in anisotropic media: Geophysics, 59(8), 1290-1304.
[44] Tsvankin, I., and Thomsen, L., 1995, Inversion of reflection traveltimes for transverse isotropy: Geophysics, 60(4), 1095-1107.
[45] Zhang, L., Rector, J. W., Hoversten, G. M., and Fomel, S., 2007, Split-step complex Padé-Fourier depth migration: Geophysical Journal International, 171(3), 1308-1313.
[1] 孙小东,葛中慧,李振春,洪瑛. 黏声VTI介质逆时偏移成像稳定性研究[J]. 应用地球物理, 2016, 13(4): 608-613.
[2] 陈海峰, 李向阳, 钱忠平, 宋建军, 赵桂玲. 基于两参数简化方程的叠前偏移速度分析[J]. 应用地球物理, 2016, 13(1): 135-144.
[3] 李晓明, 陈双全, 李向阳. VTI介质转换波双参数时距方程分析与应用[J]. 应用地球物理, 2013, 10(4): 477-487.
[4] 唐新功, 胡文宝, 严良俊. 地形对长偏移距瞬变电磁测深的影响研究[J]. 应用地球物理, 2011, 8(4): 277-284.
[5] 谭尘青, 吴燕冈, 韩立国, 巩向博, 崔杰. 平移初至点走时动校正反演[J]. 应用地球物理, 2011, 8(3): 217-224.
[6] 郝重涛, 姚陈, 张建中. 任意空间取向TI介质中长排列非双曲动校正公式优化[J]. 应用地球物理, 2010, 7(4): 336-347.
[7] 杜启振, 李宾, 侯波. 横向各向同性介质紧致交错网格有限差分波场模拟[J]. 应用地球物理, 2009, 6(1): 42-49.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司