APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (1): 111-119    DOI: 10.1007/s11770-014-0463-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
高精度双吸收边界条件在地震波场模拟中的应用
刘洋1,2,李向阳1,2,3,陈双全1,2
1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249
2. 中国石油大学(北京)CNPC物探重点实验室,北京 102249
3. 英国地质调查局, Edinburgh EH9 3LA, UK
Application of the double absorbing boundary condition in seismic modeling
Liu Yang1,2, Li Xiang-Yang1,2,3, and Chen Shuang-Quan1,2
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China.
2. CNPC Key Laboratory of Geophysical Prospecting, China University of Petroleum, Beijing 102249, China.
3. Edinburgh Anisotropy Project, British Geophysical Survey, Edinburgh EH9 3LA, UK.
 全文: PDF (794 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 边界反射处理是地震数值模拟中需要研究的重要问题之一。本文将数学科学计算中提出的双吸收边界条件(DABC) (Hagstrom et al., 2014)应用到地震波场数值模拟中。该方法将一种局部高精度吸收边界(ABC)应用于两条平行的人工边界上,从而实现对边界反射的双吸收。本文以二维声波方程为例,设计一个基于DABC的有限差分(FD)正演方案,给出详细推导过程和实现步骤,相对于完全匹配层(PML),其理论分析和实现难度大大降低,稳定性和灵活性亦得到一定程度的增强。文章最后对典型的均质模型和SEG盐丘模型进行有限差分数值模拟实验,实验结果表明,DABC能够得到远远优于Clayton-Engquist边界条件 (CEBC)的吸收效果,并与PML吸收效果相当。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘洋
李向阳
陈双全
关键词双吸收边界条件   数值模拟   有限差分   人工边界反射     
Abstract: We apply the newly proposed double absorbing boundary condition (DABC) (Hagstrom et al., 2014) to solve the boundary reflection problem in seismic finite-difference (FD) modeling. In the DABC scheme, the local high-order absorbing boundary condition is used on two parallel artificial boundaries, and thus double absorption is achieved. Using the general 2D acoustic wave propagation equations as an example, we use the DABC in seismic FD modeling, and discuss the derivation and implementation steps in detail. Compared with the perfectly matched layer (PML), the complexity decreases, and the stability and flexibility improve. A homogeneous model and the SEG salt model are selected for numerical experiments. The results show that absorption using the DABC is considerably improved relative to the Clayton–Engquist boundary condition and nearly the same as that in the PML.
Key wordsDouble absorbing boundary condition   numerical modeling   finite-difference method   artificial boundary condition   
收稿日期: 2014-09-25;
基金资助:

本研究由国家自然科学基金联合基金重点项目(编号:U1262208)和国家科技重大专项(编号:2011ZX05019-008)资助。

引用本文:   
刘洋,李向阳,陈双全. 高精度双吸收边界条件在地震波场模拟中的应用[J]. 应用地球物理, 2015, 12(1): 111-119.
Liu Yang,Li Xiang-Yang,Chen Shuang-Quan. Application of the double absorbing boundary condition in seismic modeling[J]. APPLIED GEOPHYSICS, 2015, 12(1): 111-119.
 
[1] Bécache, E., Givoli, D., and Hagstrom, T., 2010, High-order absorbing boundary conditions for anisotropic and convective wave equations: Journal of Computational Physics,229(4), 1099-1129.
[2] Bérenger, J. P., 1994, A perfectly matched layer for the absorption of electromagnetic waves: Journal of Computational Physics, 114, 185-200.
[3] Bécache, E., Fauqueux, S., and Joly, P., 2003, Stability of perfectly matched layers, group velocities and anisotropic waves: Journal of Computational Physics,188(2), 399-433.
[4] Cerjan, C., Kosloff, D., Kosloff, R., and Moshe, R., 1985, A non- reflection boundary condition for discrete acoustic and elastic wave equation: Geophysics, 50(4), 705-708.
[5] Clayton, R., and Engquist, B., 1977, Absorbing boundary conditions for acoustic and elastic wave equations: Bulletin of the Seismological Society of America,67(6), 1529-1540.
[6] Collino, F., 1993, High order absorbing boundary conditions for wave propagation models: Straight line boundary and corner cases: Proceedings of the 2nd International Conference on Mathematical and Numerical Aspects of Wave Propagation, 161-171.
[7] Collino, F., and Tsogka, C., 2001, Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media: Geophysics,66(1), 294-307.
[8] Gedney, S. D., 1996, An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices: Antennas and Propagation, IEEE Transactions on,44(12), 1630-1639.
[9] Givoli, D., Neta, B., 2004, High-order non-reflecting boundary scheme for time-dependent waves: Journal of Computational Physics, 186(1), 24-46.
[10] Hagstrom, T., Givoli, D., Rabinovich, D., and Bielak, J., 2014, The Double Absorbing Boundary method: Journal of Computational Physics, 259, 220-241.
[11] Higdon, R. L., 1987, Numerical absorbing boundary conditions for the wave equation: Mathematics of Computation, 49(179), 65-90.
[12] Komatitsch, D. and Tromp, J., 2003, A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation:Geophysical Journal International,154(1), 146-153.
[13] Liu, Y., and Sen, M. K., 2010, A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation: Geophysics,75(2), A1-A6.
[14] Liu, Y., and Sen, M. K., 2012, A hybrid absorbing boundary condition for elastic staggered-grid modeling: Geophysical Prospecting,60(6), 1114-1132.
[15] Rabinovich, D., Givoli, D., and Bécache, E., 2010, Comparison of high-order absorbing boundary conditions and perfectly matched layers in the frequency domain: International Journal for Numerical Methods in Biomedical Engineering,26(10), 1351-1369.
[16] Roden, J. A., and Gedney S. D., 2000, Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media: Microwave and Optical Technology Letters, 27(5), 334-339.
[17] Song J. Y., Zheng X. D., Zhang Y., Xu J. Q., Qin Z., and Song X. J., 2011, Frequency domain wave equation forward modeling using gaussian elimination with static pivoting: Applied Geophysics, 8(1), 60-68.
[18] Yan, H. Y., and Liu Y., 2013a, Visco-acoustic pre-stack reverse-time migration based on the time-space domain adaptive high-order finite-difference method: Geophysical Prospecting, 61, 941-954.
[19] Yan, H. Y., Liu Y., 2013b, Acoustic VTI modeling and pre-stack reverse-time migration based on the time-space domain staggered-grid finite-difference method: Journal of Applied Geophysics, 90, 41-52.
[20] Zhao, J. G., and Shi, R. Q., 2013, Perfectly matched layer-absorbing boundary condition for finite-element time-domain modeling of elastic wave equations: Applied Geophysics, 10(3), 323-336.
[1] 胡隽,曹俊兴,何晓燕,王权锋,徐彬. 水力压裂对断层应力场扰动的数值模拟[J]. 应用地球物理, 2018, 15(3-4): 367-381.
[2] 成景旺,范娜,张友源,吕晓春. 基于贴体旋转交错网格的起伏地表地震波有限差分数值模拟[J]. 应用地球物理, 2018, 15(3-4): 420-431.
[3] 戴世坤,赵东东,张钱江,李昆,陈轻蕊,王旭龙. 基于泊松方程的空间波数混合域重力异常三维数值模拟[J]. 应用地球物理, 2018, 15(3-4): 513-523.
[4] 曹雪砷,陈浩,李平,贺洪斌,周吟秋,王秀明. 基于分段线性调频的宽带偶极子声源的测井方法研究[J]. 应用地球物理, 2018, 15(2): 197-207.
[5] 任英俊,黄建平,雍鹏,刘梦丽,崔超,杨明伟. 窗函数交错网格有限差分算子及其优化方法[J]. 应用地球物理, 2018, 15(2): 253-260.
[6] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[7] 胡松,李军,郭洪波,王昌学. 水平井随钻电磁波测井与双侧向测井响应差异及其解释应用[J]. 应用地球物理, 2017, 14(3): 351-362.
[8] 方刚,巴晶,刘欣欣,祝堃,刘国昌. 基于时间辛格式的傅里叶有限差分地震波场正演[J]. 应用地球物理, 2017, 14(2): 258-269.
[9] 张煜,平萍,张双喜. 孔隙介质中面波有限差分模拟及应力镜像条件[J]. 应用地球物理, 2017, 14(1): 105-114.
[10] 张建敏,何兵寿,唐怀谷. 三维TTI介质中的纯准P波方程及求解方法[J]. 应用地球物理, 2017, 14(1): 125-132.
[11] 陈辉,邓居智,尹敏,殷长春,汤文武. 直流电阻率法三维正演的聚集代数多重网格算法研究[J]. 应用地球物理, 2017, 14(1): 154-164.
[12] 孟庆鑫,胡祥云,潘和平,周峰. 地-井瞬变电磁多分量响应数值分析[J]. 应用地球物理, 2017, 14(1): 175-186.
[13] 杨思通,魏久传,程久龙,施龙青,文志杰. 煤巷三维槽波全波场数值模拟与波场特征分析[J]. 应用地球物理, 2016, 13(4): 621-630.
[14] 付博烨,符力耘,魏伟,张艳. 超声岩石物理实验尾波观测中边界反射的影响分析[J]. 应用地球物理, 2016, 13(4): 667-682.
[15] 陶蓓,陈德华,何晓,王秀明. 界面不规则性对套后超声波成像测井响应影响的模拟研究[J]. 应用地球物理, 2016, 13(4): 683-688.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司