APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (1): 55-63    DOI: 10.1007/s11770-014-0474-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于二维希尔伯特变换的地震倾角求取方法及其在随机噪声衰减中的应用
刘财1,陈常乐1,王典1,刘洋1,王世煜1,张亮2
1. 吉林大学地球探测科学与技术学院,长春 130026
2. 中国石油吉林油田公司乾安采油厂,松原 138000
Seismic dip estimation based on the two-dimensional Hilbert transform and its application in random noise attenuation
Liu Cai1, Chen Chang-Le1, Wang Dian1, Liu Yang1, Wang Shi-Yu1, and Zhang Liang2
1. College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China.
2. Qian An Oil Factory, Jilin Oilfield, CNPC, Songyuan 138000, China.
 全文: PDF (965 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在地震勘探数据采集中,随机噪声严重影响地震资料质量,给后期解释工作带来很大困难。如何在不损失剖面有效信息的前提下压制随机噪声,有效地提高地震资料的信噪比和保真度,是本文的研究目标。构造导向滤波技术的核心是构造方向表征的求取以及如何实现非平稳滤波,来达到提高地震数据信噪比和保真度的目的。本文首先通过分析函数二维导数与希尔伯特变换的频率响应关系,推导出了基于二维希尔伯特变换的非迭代地震同相轴倾角求取算子,进而达到了构造方向表征的求取;其次选取多项式拟合作为构造导向滤波中的非平稳滤波方法,扩展了非平稳多项式拟合的应用范围;最后沿构造倾角方向进行变振幅同相轴的非平稳多项式拟合,实现和构建了新的自适应构造导向滤波方法。理论模型和实际地震资料处理的结果表明,所提出的方法实现了既保护构造信息又有效地压制了随机噪声的目的。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘财
陈常乐
王典
刘洋
王世煜
张亮
关键词随机噪声衰减   构造信息保护   二维希尔伯特变换   地震局部倾角   非平稳多项式拟合     
Abstract: In seismic data processing, random noise seriously affects the seismic data quality and subsequently the interpretation. This study aims to increase the signal-to-noise ratio by suppressing random noise and improve the accuracy of seismic data interpretation without losing useful information. Hence, we propose a structure-oriented polynomial fitting filter. At the core of structure-oriented filtering is the characterization of the structural trend and the realization of nonstationary filtering. First, we analyze the relation of the frequency response between two-dimensional (2D) derivatives and the 2D Hilbert transform. Then, we derive the noniterative seismic local dip operator using the 2D Hilbert transform to obtain the structural trend. Second, we select polynomial fitting as the nonstationary filtering method and expand the application range of the nonstationary polynomial fitting. Finally, we apply variable-amplitude polynomial fitting along the direction of the dip to improve the adaptive structure-oriented filtering. Model and field seismic data show that the proposed method suppresses the seismic noise while protecting structural information.
Key wordsTwo-dimensional Hilbert transform   random noise attenuation   structure protection   nonstationary polynomial fitting   local seismic dip   
收稿日期: 2014-08-05;
基金资助:

本研究由国家自然科学基金项目(编号:41274119,41174080和41004041)和国家863重大项目(编号:2012AA09A20103)资助。

引用本文:   
刘财,陈常乐,王典等. 基于二维希尔伯特变换的地震倾角求取方法及其在随机噪声衰减中的应用[J]. 应用地球物理, 2015, 12(1): 55-63.
Liu Cai,Chen Chang-Le,Wang Dian et al. Seismic dip estimation based on the two-dimensional Hilbert transform and its application in random noise attenuation[J]. APPLIED GEOPHYSICS, 2015, 12(1): 55-63.
 
[1] Bekara, M., and van der Baan, M., 2009, Random and coherent noise attenuation by empirical mode decomposition: Geophysics, 74(5), V89-V98.
[2] Fehmers, G. C., and Höcker, C. F. W., 2003, Fast structural interpretation with structure-oriented filtering: Geophysics, 68(4), 1286-1293.
[3] Fomel, S., and Guitton, A., 2006, Regularizing seismic inverse problems by model reparameterization using plane-wave construction: Geophysics, 71(5), A43-A47.
[4] Fomel, S., 2009, Adaptive multiple subtraction using regularized nonstationary regression: Geophysics, 74(1), V25-V33.
[5] Fomel, S., 2002, Applications of plane-wave destruction filters: Geophysics, 67(6), 1946-1960.
[6] Fomel, S., 2007, Shaping regularization in geophysical-estimation problems: Geophysics, 72(2), R29-R36.
[7] Hoeber, H. C., Brandwood, S., and Whitcombe, D. N., 2006, Structurally consistent filtering: In 68th EAGE Conference Exhibition.
[8] Lehmer, D. H., 1985, Interesting series involving the central binomial coefficient: American Mathematical Monthly, 449-457.
[9] Li, H. S., Wu, G. C., and Yin, X. Y., 2012, Application of Morphological Component Analysis to Remove of Random Noise in Seismic Data: Journal of Jilin University(Earth Science Edition), 42(2), 554-561.
[10] Li, Y., Yang, B. J., Lin, and H. B., et al. 2013, Suppression of strong random noise in seismic data by using time-frequency peak filtering: Science China Earth Sciences, 56(7), 1200-1208.
[11] Liu, C., Liu, Y., and Yang, B. J., et al. 2006, A 2D multistage median filter to reduce random seismic noise: Geophysics, 71(5), V105-V110.
[12] Liu, G., Chen, X., 2013, Noncausal f-x-y regularized nonstationary prediction filtering for random noise attenuation on 3D seismic data: Journal of Applied Geophysics, 93, 60-66.
[13] Liu, G. C., Chen, X. H., and Li, J. Y., et al. 2011, Seismic noise attenuation using nonstationary polynomial fitting: Applied Geophysics, 8(1), 18-26.
[14] Liu, G., Chen, X., and Du, J., et al. 2012, Random noise attenuation using f-x regularized nonstationary autoregression: Geophysics, 77(2), V61-V69.
[15] Liu, Y., Fomel, S., and Liu, G., 2010, Nonlinear structure-enhancing filtering using plane-wave prediction: Geophysical Prospecting, 58(3), 415-427.
[16] Liu, Y., Fomel, S., and Liu, C., et al. 2009, High-order seislet transform and its application of random noise attenuation: Chinese Journal of Geophysics, 52(8), 2142-2151.
[17] Liu, Y., Liu, C., and Wang, D, 2008, A 1D time-varying median filter for seismic random, spike-like noise elimination: Geophysics, 74(1), V17-V24.
[18] Liu, Y., Wang, D., and Liu, C., et al. 2011, Weighted median filter based on local correlation and its application to poststack random noise attenuation: Chinese Journal of Geophysics, 54(2), 358-367.
[19] Liu, Z., Zhao, W., and Chen, X., et al 2012, Local SVD for random noise suppression of seismic data in frequency domain: Oil Geophysical Prospecting, 47(2), 202-206.
[20] Lu, W., Zhang, W., and Liu, D., 2006, Local linear coherent noise attenuation based on local polynomial approximation: Geophysics, 71(6), V163-V169.
[21] Lu, Y. H., and Lu, W. K., 2009, Edge-preserving polynomial fitting method to suppress random seismic noise: Geophysics, 74(4), V69-V73.
[22] Maraschini, M., Neill Turton, C. G. G., 2013, Assessing the impact of a Non-Local-Means random noise attenuator on coherency: SEG Technical Program Expanded Abstracts, 4294-4298.
[23] Ottolini, R., 1983, Signal/noise separation in dip space: SEP Report, 37, 143-149.
[24] Pei, S. C., and Wang, P. H., 2001, Closed-form design of maximally flat FIR Hilbert transformers, differentiators, and fractional delayers by power series expansion: IEEE Transactions on, Circuits and Systems I: Fundamental Theory and Applications, 48(4), 389-398.
[25] Schleicher, J., Costa, J. C., and Santos, L. T., et al. 2009, On the estimation of local slopes: Geophysics, 74(4), P25-P33.
[26] Tikhonov, A., 1963, Solution of incorrectly formulated problems and the regularization method: In Soviet Math. Dokl, pp., 1035-1038.
[27] Zhang, C., Lin, H. B., and Li, Y., et al. 2013, Seismic random noise attenuation by time-frequency peak filtering based on joint time-frequency distribution: Comptes Rendus Geoscience, 345(9), 383-391.
[1] 甘叔玮, 王守东, 陈阳康, 陈江龙, 钟巍, 张成林. 基于相似度权重算子和f − x域经验模态分解的随机噪声衰减方法[J]. 应用地球物理, 2016, 13(1): 127-134.
[2] 马彦彦, 李国发, 王峣钧, 周辉, 张保江. F-X域复数经验模态分解去噪方法[J]. 应用地球物理, 2015, 12(1): 47-54.
[3] 王德利, 仝中飞, 唐晨, 朱恒. Curvelet阈值迭代法地震随机噪声压制[J]. 应用地球物理, 2010, 7(4): 315-324.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司