APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2009, Vol. 6 Issue (4): 363-374    DOI: 10.1007/s11770-009-0034-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
2D多尺度混合优化地球物理反演方法及其应用
潘纪顺1,2,徐朝繁2,张先康2,赵平3,田晓峰2
1. 中国郑州,华北水利水电学院,郑州 450011
2. 中国郑州,中国地震局地球物理勘探中心,郑州 450002
3. PGS Australia Pty Ltd, 1060 Hay St, West Perth, Western Australia, 6005
2D multi-scale hybrid optimization method for geophysical inversion and its application
Pan Ji-Shun1,2, Wang Xin-Jian1, Zhang Xian-Kang2, Xu Zhao-Fan2, Zhao Ping3, Tian Xiao-Feng2, and Pan Su-Zhen2
1. North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 ,China.
4. Geophysical Exploration Center, China Earthquake Administration, Zhengzhou 450002, China.
3. PGS Australia Pty Ltd,1060 Hay St, West Perth, Western Australia, 6005, Australia.
 全文: PDF (1231 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 局部优化和全局优化方法广泛应用到地球物理反演,但是两者各有其优缺点。将两类方法结合起来可以取长补短。将退火遗传算法(SAGA)和单纯形算法相结合,得到了一种高效、健全的2D非线性混合地震走时反演方法。首先,利用SAGA进行大范围的全局搜索,然后由单纯形方法进行快速局部搜索。为了降低层析成像的多解性,我们采用了多尺度逐次逼近的技巧。把速度场划分为不同的空间尺度,定义网格节点上的速度作为待反演参数,采用双三次样条函数模型参数化,正问题采用有限差分走时计算方法,反问题采用多尺度混合反演方法。一个低速度异常体的数值模拟试验和抗走时扰动试验表明该方法是有效和健全的。我们将该方法应用到青藏高原东北缘阿尼玛卿缝合带东段上部地壳速度结构研究中。数字模型试验和实际资料的应用表明了方法的有效性和健全性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘纪顺
徐朝繁
张先康
赵平
田晓峰
关键词多尺度   地震走时层析   混合优化方法   反演   阿尼玛卿缝合带     
Abstract: Local and global optimization methods are widely used in geophysical inversion but each has its own advantages and disadvantages. The combination of the two methods will make it possible to overcome their weaknesses. Based on the simulated annealing genetic algorithm (SAGA) and the simplex algorithm, an efficient and robust 2-D nonlinear method for seismic travel-time inversion is presented in this paper. First we do a global search over a large range by SAGA and then do a rapid local search using the simplex method. A multi-scale tomography method is adopted in order to reduce non-uniqueness. The velocity field is divided into different spatial scales and velocities at the grid nodes are taken as unknown parameters. The model is parameterized by a bi-cubic spline function. The finite-difference method is used to solve the forward problem while the hybrid method combining multi-scale SAGA and simplex algorithms is applied to the inverse problem. The algorithm has been applied to a numerical test and a travel-time perturbation test using an anomalous low-velocity body. For a practical example, it is used in the study of upper crustal velocity structure of the A’nyemaqen suture zone at the north-east edge of the Qinghai-Tibet Plateau. The model test and practical application both prove that the method is effective and robust.
Key wordsmulti-scale   seismic travel-time tomography   hybrid optimization method   inversion   A’nyemaqen suture zone   
收稿日期: 2009-01-21;
基金资助:

本研究由国家自然基金(编号:40334040和40474049)和华北水利水电学院高层次人才科研启动项目联合资助。

引用本文:   
潘纪顺,徐朝繁,张先康等. 2D多尺度混合优化地球物理反演方法及其应用[J]. 应用地球物理, 2009, 6(4): 363-374.
PAN Ji-Shun,XU Chao-Fan,ZHANG Xian-Kang et al. 2D multi-scale hybrid optimization method for geophysical inversion and its application[J]. APPLIED GEOPHYSICS, 2009, 6(4): 363-374.
 
[1] Bunks, C., Saleck, F. M., Zaleski, S., and Chavent, G., 1995, Multiscale seismic waveform inversion: Geophysics, 60, 1457 - 1473.
[2] Cary, P. W. and Chapman, C. H., 1988, Automatic 1-D waveform inversion of marine seismic reflection data: Geophys. J. Int., 93, 527 - 546.
[3] Chunduru, R. K., Sen, M. K., and Stoffa, P. L., 1997, Hybrid optimization methods for geophysical inversion: Geophysics, 62, 1196 - 1207.
[4] Hole, J. A., Clowes, R. M., and Ellis, R. M., 1992, Interface inversion using broadside seismic refraction data and three-dimensional travel time calculations: J. Geophys. Res., 97, 3417 - 3429.
[5] Improta, L., Zollo, A., Herrero, M. R., Frattini, J., Virieux, and Dell’Aversana, 2002, Seismic imaging of complex structures by nonlinear travel-time inversion of dense wide-angle data: application to a thrust belt: Geophys. J. Int., 151, 264 - 278.
[6] Jin, S., and Beydoun, W., 2000, 2-D multi-scale nonlinear velocity inversion: Geophysical Prospecting, 48, 163 - 180.
[7] Jin, S., and Madariaga, R., 1994, Nonlinear velocity inversion by a two step Monte-Carlo method: Geophysics, 59, 577 - 590.
[8] Landa, E., Beydoun, W., and Tarantola, A., 1989, Reference velocity model estimation from pre-stack waveforms: coherence optimization by simulated annealing: Geophysics, 54, 984 - 990.
[9] Lutter, W. J., and Nowack, R. L., 1990, Inversion for crustal structure using reflections from the PASSCAL Ouachita Experiment: J. Geophys. Res., 95, 4633 - 4646.
[10] Nelder, J. A., and Mead, R., 1965, A simplex method for function minimization: Computer Journal, 7, 308-313.
[11] Podvin, P., and Lecomte, I., 1991, Finite difference computation of travel time in very contrasted velocity models: a massively parallel approach and its associated tools: Geophys. J. Int., 105(1), 271 - 284.
[12] Schneider, W. A., Ranzinger, K. A., Balch, A. H., and Kruse, C., 1992, A dynamic programming approach to first travel-time computation in media with arbitrarily distributed velocities: Geophysics, 57(1), 39 - 50.
[13] Sen, M. K., and Stoffa, P. L., 1991, Nonlinear one-dimensional seismic waveform inversion using simulated annealing: Geophysics, 56, 1624 - 1638.
[14] Sen, M. K. and Stoffa, P. L., 1995, Global optimization methods in geophysical inversion: Elsvier Science Publishers, Netherlands.
[15] Stoffa, P. L., and Sen, M. K., 1991, Nonlinear multi-parameter optimization using genetic algorithms: inversion of plane-wave seismogram: Geophysics, 56(11), 1794 - 1810.
[16] Stork, C., and Kusuma, T., 1992, Hybrid genetic autostatics: New approach for large-amplitude statics with noisy data: 62nd Ann. Int. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1127 - 1131.
[17] Wang, Y. H., and Houseman, G. A., 1994, Inversion of reflection seismic amplitude data for interface geometry: Geophys. J. Int., 117, 92 - 110.
[18] Wang, Y. H., and Houseman, G. A., 1995, Tomographic inversion of reflection seismic amplitude data for velocity variations: Geophys. J. Int., 123, 355 - 372.
[19] Xu, Z. F., Zhang, X. K., Zhang, J. S., and Hu, X. Q., 2006, Ray hit analysis method and its application to complex upper crustal structure survey: Acta Seismologica Sinica (in Chinese), 19(2), 173 - 182.
[20] Zelt, C. A., and Smith, R. B., 1992, Seismic travel-time inversion for 2-D crustal velocity structure: Geophys. J. Int., 108, 16 - 34.
[21] Zhao, P., 1996, An efficient computer program for wavefront calculation by the finite difference method: Computers & Geosciences, 22(3), 239 - 251.
[22] Zhou, H. W., 2003, Multiscale traveltime tomography: Geophysics, 68, 1639 - 1649.
[1] 侯振隆,黄大年,王恩德,程浩. 基于多级混合并行算法的重力梯度数据三维密度反演研究[J]. 应用地球物理, 2019, 16(2): 141-153.
[2] 谢玮,王彦春,刘学清,毕臣臣,张丰麒,方圆,Tahir Azeem. 基于改进的贝叶斯推断和最小二乘支持向量机的非线性多波联合AVO反演*[J]. 应用地球物理, 2019, 16(1): 70-82.
[3] 王恩江,刘洋,季玉新,陈天胜,刘韬. 粘滞声波方程Q值波形反演方法研究*[J]. 应用地球物理, 2019, 16(1): 83-98.
[4] 张振波, 轩义华, 邓勇. 斜缆地震道集资料的叠前同时反演*[J]. 应用地球物理, 2019, 16(1): 99-108.
[5] 孟兆海,徐学纯,黄大年. 基于近似零范数稀疏恢复的迭代解法的三维重力反演[J]. 应用地球物理, 2018, 15(3-4): 524-535.
[6] 杨海燕,李锋平,Chen Shen-En,岳建华,郭福生,陈晓,张华. 圆锥型场源瞬变电磁法测量数据反演[J]. 应用地球物理, 2018, 15(3-4): 545-555.
[7] 曹晓月,殷长春,张博,黄鑫,刘云鹤,蔡晶. 基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究[J]. 应用地球物理, 2018, 15(3-4): 556-565.
[8] 刘炜,王彦春,李景叶,刘学清,谢玮. 基于矢量化反射率法的多波叠前联合AVA反演[J]. 应用地球物理, 2018, 15(3-4): 448-465.
[9] 马琦琦,孙赞东. 基于叠前PP-PS波联合广义线性反演的弹性模量提取方法[J]. 应用地球物理, 2018, 15(3-4): 466-480.
[10] 王玲玲,魏建新,黄平,狄帮让,张福宏. 多尺度裂缝储层地震预测方法研究[J]. 应用地球物理, 2018, 15(2): 240-252.
[11] 史才旺,何兵寿. 基于炮采样的多尺度全波形反演[J]. 应用地球物理, 2018, 15(2): 261-270.
[12] 高宗慧,殷长春,齐彦福,张博,任秀艳,卢永超. 时间域航空电磁数据变维数贝叶斯反演[J]. 应用地球物理, 2018, 15(2): 318-331.
[13] 孙思源,殷长春,高秀鹤,刘云鹤,任秀艳. 基于小波变换的重力压缩正演和多尺度反演研究[J]. 应用地球物理, 2018, 15(2): 342-352.
[14] 李长征,杨勇,王锐,颜小飞. 黄河库区淤积泥沙特性的声学参数反演[J]. 应用地球物理, 2018, 15(1): 78-90.
[15] 孙成禹,王妍妍,伍敦仕,秦效军. 基于洗牌蛙跳算法的瑞雷波非线性反演[J]. 应用地球物理, 2017, 14(4): 551-558.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司