Parallel rapid relaxation inversion of 3D magnetotelluric data
Lin Changhong1,2, Tan Handong1,2, and Tong Tuo1,2
1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, 100083, China.
2. School of Geophysics and Information Technology, China University of Geosciences, Beijing, 100083, China.
Abstract:
We implement a parallel algorithm with the advantage of MPI (Message Passing Interface) to speed up the rapid relaxation inversion for 3D magnetotelluric data. We test the parallel rapid relaxation algorithm with synthetic and real data. The execution efficiency of the algorithm for several different situations is also compared. The results indicate that the parallel rapid relaxation algorithm for 3D magnetotelluric inversion is effective. This parallel algorithm implemented on a common PC promotes the practical application of 3D magnetotelluric inversion and can be suitable for the other geophysical 3D modeling and inversion.
LIN Chang-Hong,TAN Han-Dong,TONG Tuo. Parallel rapid relaxation inversion of 3D magnetotelluric data[J]. APPLIED GEOPHYSICS, 2009, 6(1): 77-83.
[1]
Avdeev, D. B., and Avdeeva, A. D., 2006, A rigorous three-dimensional magnetotelluric inversion: Progress in Electromagnetics Research, 62, 41 - 48.
[2]
Du, Z. H., 2001, High-powered computing parallel programming technique-MPI parallel program design: Tsinghua University Press, Beijing.
[3]
Hu, Z. Z., Hu, X. Y., and He, Z. X., 2006, Pseudo-three-dimensional magnetotelluric inversion using nonlinear conjugate gradients: Chinese Journal of Geophysics (in Chinese), 49(4), 1226 - 1234.
[4]
Lin, C. H., Tan, H. D., and Tong, T., 2008, Three-dimensional conjugate gradient inversion of magnetotelluric sounding data: Applied Geophysics, 5(4), 314 - 321.
[5]
Mackie, R. L., and Madden, T. R., 1993, Three-dimensional magnetotelluric inversion using conjugate gradients: Geophys. J. Int., 115, 215 - 229.
[6]
Newman, G. A., and Alumbaugh, D. L., 1997a, Three-dimensional massively parallel electromagnetotelluric inversion - I. Theory: Geophys. J. Int., 128, 345 - 354.
[7]
Newman, G. A., and Alumbaugh, D. L., 1997b, Three-dimensional massively parallel electromagnetotelluric inversion - II. Analysis of a crosswell electromagnetic experiment: Geophys. J. Int., 128, 355 - 363.
[8]
Newman, G. A., and Alumbaugh, D. L., 2000, Three-dimensional magnetotelluric inversion using non-linear conjugate gradients: Geophys. J. Int., 140, 410 - 424.
[9]
Siripunvaraporn, W., Egbert, G., Lenbury, Y., and Uyeshima, M., 2005, Three-dimensional magnetotelluric inversion: data-space method: Physics of The Earth and Planetary Interiors, 150(1 - 3), 3 - 14.
[10]
Smith, J. T., and Booker, J. R., 1991, Rapid inversion of two- and three-dimensional magnetotelluric data: J. Geophys. Res, 96, 3905 - 3922.
[11]
Spichak, V., and Popova, 2000, Artificial neural network inversion of magnetotelluric data in terms of three-dimensional earth macroparameters: Geophys. J. Int., 142, 15 - 26.
[12]
Takasugi, S., Tanaka, K. K., Kawakami, N., and Muramatsu, S., 1992, High spatial resolution of the resistivity structure revealed by a dense network MT measurement - A case study in the Minamikayabe area, Hokkaido, Japan: Journal of Geomagnetism and Geoelectricity, 44, 289 - 308.
[13]
Tan, H. D., Yu, Q. F., Booker, J., and Wei, W. B., 2003a, Magnetotelluric three-dimensional modeling using the staggered-grid finite difference method: Chinese Journal of Geophysics (in Chinese), 46(5), 705 - 711.
[14]
Tan, H. D., Yu, Q. F., Booker, J., and Wei, W. B., 2003b, Three-dimensional rapid relaxation inversion for the magmetotelluric method: Chinese Journal of Geophysics (in Chinese), 46(6), 850 - 854.
[15]
Tan, H. D., Tong, T., and Lin, C. H., 2006, The parallel 3D magnetotelluric forward modeling algorithm: Applied Geophysics, 3(4), 197 - 202.
[16]
Zhdanov, M., and Tolstaya, E., 2004, Minimum support nonlinear parameterization in the solution of a 3D magnetotelluric inverse problem: Inverse Problems, 20(3), 937 - 952.