APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (2): 134-144    DOI: 10.1007/s11770-013-0376-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
线源二维时间域瞬变电磁二次场数值模拟
刘云1,王绪本2,王赟1
1. 中国科学院地球化学研究所矿床地球化学国家重点实验室,贵阳550002
2. 成都理工大学地球物理学院,成都610059
Numerical modeling of the 2D time-domain transient electromagnetic secondary field of the line source of the current excitation
Liu Yun1, Wang Xu-Ben2, and Wang Yun1
1. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry Chinese Academy of Sciences, Gui Yang 550002, China.
2. School of Geophysics, Chengdu University of Technology, Chengdu 610059, China.
 全文: PDF (937 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文在Oristaglio等(1984)和Adhidjaja等(1985)工作基础上,给出线源二维时间域瞬变电磁二次场的DuFort-Frankel有限差分数值解,有效避免了在总场求解法中场源附近的奇异问题,并对地-空边界电导率的处理、归一化感应电动势偏导数的计算、推进时间步的确定,提出了改进方法;吸取前人成就中二次场地-空边界向上延拓和零值边界处理技术,从而简化了计算方法;通过对均匀大地、水平层状大地模型的计算,二次场求解法与解析法的最大相对误差小于0.01%,计算速度比总场求解法提高了约3倍;模拟计算不同时刻瞬变电磁场在地下的分布形态,描绘出感应涡流向下向外的传播特征,以及与地下异常体相互作用的物理过程。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘云
王绪本
王赟
关键词时间域瞬变电磁   二维   二次场   DuFort-Frankel有限差分   数值模拟     
Abstract: To effectively minimize the electromagnetic field response in the total field solution, we propose a numerical modeling method for the two-dimensional (2D) time-domain transient electromagnetic secondary field of the line source based on the DuFort-Frankel finite-difference method. In the proposed method, we included the treatment of the earth-air boundary conductivity, calculated the normalized partial derivative of the induced electromotive force (Emf), and determined the forward time step. By extending upward the earth–air interface to the air grid nodes and the zero-value boundary conditions, not only we have a method that is more efficient but also simpler than the total field solution. We computed and analyzed the homogeneous half-space model and the flat layered model with high precision—the maximum relative error is less than 0.01% between our method and the analytical method—and the solution speed is roughly three times faster than the total-field solution. Lastly, we used the model of a thin body embedded in a homogeneous half-space at different delay times to depict the downward and upward spreading characteristics of the induced eddy current, and the physical interaction processes between the electromagnetic field and the underground low-resistivity body.
Key wordsTime-domain transient electromagnetics   secondary field   DuFort-Frankel finite-difference method   numerical modeling   
收稿日期: 2015-08-05;
基金资助:

本研究由国家高技术研究发展计划(863计划)重点项目子课题(2009AA06Z108)资助。

引用本文:   
刘云,王绪本,王赟. 线源二维时间域瞬变电磁二次场数值模拟[J]. 应用地球物理, 2013, 10(2): 134-144.
LIU Yun,WANG Xu-Ben,WANG Bin. Numerical modeling of the 2D time-domain transient electromagnetic secondary field of the line source of the current excitation[J]. APPLIED GEOPHYSICS, 2013, 10(2): 134-144.
 
[1] Adhidjaja, J. I., Hohmann, G. W., and Oristaglio, M. L., 1985, Two-dimensional transient electromagnetic responses: Geophysics, 50, 2849 - 2861.
[2] Birtwistle, G. M., 1968, The explicit solution of the equation of heat conduction: Comput. J., 11, 317.
[3] DuFort, E. C., and Frankel, S. P., 1953, Stabilitv conditions in the numerical treatment of parabolic differential equations: Math. Tables and Other Aids to Comput, 7, 135 - 152.
[4] Guptasarma, D., 1982, Computation of the time-domain response of a polarizable ground: Geophysics, 47(11), 1574 - 1576.
[5] He, G. Y., and Gao, Y. L., 2002, Visual Fortran common collection numerical algorithms: Science Press, Beijing.
[6] Liu, Y., and Wang, X. B., 2010, Complex terrain effect and studying on 2.5 D TEM: Proceedings of the 4th International Conference on Environmental and Engineering Geophysics, Chengdu, China. 452 - 456.
[7] Nabighian, M. N., (Translator Zhao J. X.), 1992, Electromagnetic Methods in Applied Geophysics, Volume 1: Theory: Geological Publishing House Beijing.
[8] Niu, Z. L., 1992, The Theory of Time-Domain Electromagnetic Methods: Central South University of Technology Press, Changsha.
[9] Oristaglio, M. L., 1982, Diffusion of electromagnetic fields into the earth from a line source of current: Geophysics, 47, 1585 - 1592.
[10] Oristaglio, M. L., and Hohmann, G. W., 1984, Diffusion of electromagnetic fields in two-dimensional earth: A finite difference approach. Geophysics, 49, 870 - 894.
[11] Piao, H. R., 1990, Theory of electromagnetic: Geology Press, Beijing.
[12] Ruan, B. Y., and Xu, S. Z., 1996, Finite-difference calculations of transient time domain electromagnetic field of a two-dimensional earth for a line source of current excitation: Geological Journal of China Universities (in Chinese), 2(4), 437 - 447.
[13] Ruan, B. Y., 1995, Asymptotic Inversion Schemes for Electrical Sounding Data and Numerical Method for 2D Time Domain Electromagnetic Response: Ph.D. Thesis, Qingdao, Ocean University of Qingdao, Qingdao.
[14] Ruan, B. Y., 1996, The application of Guptasarma method on TEM forward problem: Journal of Guilin Institute of Technology (in Chinese), 16(2), 167 - 170.
[15] Stoyer, C. H., and Greenfield, R. J., 1976, Numerical solutions of the response of a two-dimensional earth to an oscillating magnetic dipole source: Geophysics, 41(3), 519 - 530.
[16] Wang, H. J., and Luo Y. Z., 2003, Algorithm of a 2.5 dimensional finite element method for transient electromagnetic with a central loop: Chinese J. Geophysics (in Chinese), 46(6), 855 - 862.
[17] Wang, T., and Hohmann, G. W., A finite-difference time-domain solution for three-dimensional electromagnetic modeling: Geophysics, 1993, 58(6), 797 ? 809.
[18] Xiong, B., 2004, The research on large-loop transient electromagnetic 2.5D forward algorithm and some key data technologies: Ph.D. Thesis (in Chinese), China University of Geosciences (Wuhan).
[19] Xiong, B., and Luo, Y. Z., 2006, Finite element modeling of 2·5DTEMwith block homogeneous conductivity: Chinese J. Geophys (in Chinese), 49(2), 590 - 597.
[20] Yan, S., Chen, M. S., and Fu, J. M., 2002, Direct time-domain numerical analysis of transient electromagnetic field: Chinese J. Geophysics (in Chinese), 45(2), 275 - 284.
[1] 胡隽,曹俊兴,何晓燕,王权锋,徐彬. 水力压裂对断层应力场扰动的数值模拟[J]. 应用地球物理, 2018, 15(3-4): 367-381.
[2] 戴世坤,赵东东,张钱江,李昆,陈轻蕊,王旭龙. 基于泊松方程的空间波数混合域重力异常三维数值模拟[J]. 应用地球物理, 2018, 15(3-4): 513-523.
[3] 胡松,李军,郭洪波,王昌学. 水平井随钻电磁波测井与双侧向测井响应差异及其解释应用[J]. 应用地球物理, 2017, 14(3): 351-362.
[4] 杨思通,魏久传,程久龙,施龙青,文志杰. 煤巷三维槽波全波场数值模拟与波场特征分析[J]. 应用地球物理, 2016, 13(4): 621-630.
[5] 付博烨,符力耘,魏伟,张艳. 超声岩石物理实验尾波观测中边界反射的影响分析[J]. 应用地球物理, 2016, 13(4): 667-682.
[6] 陶蓓,陈德华,何晓,王秀明. 界面不规则性对套后超声波成像测井响应影响的模拟研究[J]. 应用地球物理, 2016, 13(4): 683-688.
[7] 常江浩,于景邨,刘志新. 煤矿老空水全空间瞬变电磁响应三维数值模拟及应用[J]. 应用地球物理, 2016, 13(3): 539-552.
[8] 张钱江,戴世坤,陈龙伟,强建科,李昆,赵东东. 基于网格加密-收缩的2.5D直流电法有限元模拟[J]. 应用地球物理, 2016, 13(2): 257-266.
[9] 徐小红, 屈光中, 张洋, 毕云云, 汪金菊. 基于形态成分分析地震信号二维域面波分离方法研究[J]. 应用地球物理, 2016, 13(1): 116-126.
[10] 张志勇, 谭捍东, 王堃鹏, 林昌洪, 张斌, 谢茂笔. 复电阻率法二维数据空间反演并行算法研究[J]. 应用地球物理, 2016, 13(1): 13-24.
[11] 李俊杰, 严家斌, 皇祥宇. 无网格法精度分析及在电磁法二维正演中的应用[J]. 应用地球物理, 2015, 12(4): 503-515.
[12] 刘财, 陈常乐, 王典, 刘洋, 王世煜, 张亮. 基于二维希尔伯特变换的地震倾角求取方法及其在随机噪声衰减中的应用[J]. 应用地球物理, 2015, 12(1): 55-63.
[13] 刘洋, 李向阳, 陈双全. 高精度双吸收边界条件在地震波场模拟中的应用[J]. 应用地球物理, 2015, 12(1): 111-119.
[14] Cho, Kwang-Hyun. 爆炸与天然地震的区别[J]. 应用地球物理, 2014, 11(4): 429-436.
[15] 尹成芳, 柯式镇, 许巍, 姜明, 张雷洁, 陶婕. 三维阵列侧向测井电极系设计及其响应模拟[J]. 应用地球物理, 2014, 11(2): 223-234.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司