APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (2): 125-133    DOI: 10.1007/s11770-013-0379-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
裂隙张开度对纵波速度与频散影响的实验研究
魏建新1,2,狄帮让1,2,丁拼博1,2
1. 油气资源与探测国家重点实验室,北京 102249
2. 中国石油大学(北京) CNPC物探重点实验室,北京 102249
Effect of crack aperture on P-wave velocity and dispersion
Wei Jian-Xin1,2, Di Bang-Rang1,2, and Ding Pin-Bo1,2
1. State Key Laboratory for Petroleum Resource and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China.
2. CNPC Key Laboratory of Geophysical Exploration, China University of Petroleum (Beijing), Beijing 102249, China.
 全文: PDF (751 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 为更好地了解裂隙张开度对纵波特征(速度、振幅和各向异性)的频率响应,在实验室利用分层嵌入低速薄圆片模拟裂隙方式,构建了六块裂隙密度为8.30%的不同张开度裂隙模型,用四种主频(0.1 MHz~1MHz)超声纵波换能器在裂隙模型的平行和垂直裂隙方向上测试了透射纵波速度和振幅。实验数据表明,在0.1 MHz~1MHz频段范围,张开度从0.1mm增大到0.34mm时,纵波平行裂隙方向传播时的振幅随频率线性下降,速度频散1.5%到2.1%,垂直裂隙方向传播时振幅随频率呈二次函数缓慢下降,两方向的速度频散差异加剧了张开度模型的各向异性频散。裂隙张开度对纵波特性的频散是由裂隙张开度的散射引起的。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏建新
狄帮让
丁拼博
关键词裂隙张开度   纵波特征   频散   各向异性   实验观测     
Abstract: We experimentally studied the effect of crack aperture on P-wave velocity, amplitude, anisotropy and dispersion. Experimental models were constructed based on Hudson’s theory. Six crack models were embedded with equal-radius penny-shaped crack inclusions in each layer. The P-wave velocity and amplitude were measured parallel and perpendicular to the layers of cracks at frequencies of 0.1 MHz to 1 MHz. The experiments show that as the crack aperture increases from 0.1 mm to 0.34 mm, the amplitude of the P-waves parallel to the crack layers decreases linearly with increasing frequency and the P-wave velocity dispersion varies from 1.5% to 2.1%, whereas the amplitude of the P-wave perpendicular to the crack layers decreases quadratically with increasing frequency and the velocity dispersion varies from 1.9% to 4.7%. The variation in the velocity dispersion parallel and perpendicular to the cracks intensifies the anisotropy dispersion of the P-waves in the crack models (6.7% to 83%). The P-wave dispersion strongly depends on the scattering characteristics of the crack apertures.
Key wordsCrack aperture   P-wave characteristics   dispersion   anisotropy   ultrasonic testing   
收稿日期: 2012-11-30;
基金资助:

本项研由国家重大专项(编号:2011ZX05007-006)资助。

引用本文:   
魏建新,狄帮让,丁拼博. 裂隙张开度对纵波速度与频散影响的实验研究[J]. 应用地球物理, 2013, 10(2): 125-133.
WEI Jian-Xin,DI Bang-Rang,DING Pin-Bo. Effect of crack aperture on P-wave velocity and dispersion[J]. APPLIED GEOPHYSICS, 2013, 10(2): 125-133.
 
[1] Assad, J. M., Tatham, R. H., and McDonald, J. A., 1992, A physical model study of microcrack-induced anisotropy: Geophysics, 57(12), 1562 - 1570.
[2] Assad, J. M., McDonald, J. A., Tatham, R. H., and Kusky, T. M., 1996, Elastic wave propagation in a medium containing oriented inclusions with a changing aspect ratio: A physical model study: Geophysical Journal International, 125, 163 - 172.
[3] Figueiredo, J. J. S., Schleicher, Jorg, Stewart, R. R., and Dyaur, N., 2012, Estimation of fracture orientation through elastic ultrasonic waves: 82nd Annual International Meeting, SEG, Expanded Abstracts, dx.doi.org/10.1190/segam 2012 - 1281.1
[4] Hall, S. A., and Kendall, J. M., 2003, Fracture characterization at Val-hall: Application of P-wave amplitude variation with offset and azimuth (AVOA) analysis to a 3D ocean-bottom data set: Geophysics, 68, 1150 - 1160.
[5] Hudson, J. A., 1980, Overall properties of a cracked solid: Mathematical Proceedings of the Cambridge Philosophical Society, 88, 371 - 384.
[6] Li, X. Y., Yuan. J., Liu, Liu, E., Shen, F., Li, Q., and Qu, S., 2003, Fracture detection using land 3D seismic data from the Yellow River Delta, China: The Leading Edge, 22, 680 - 684.
[7] Luo, M., and Evans, B. J., 2004, An amplitude-based multiazimuth approach to mapping fractures using P-wave 3D seismic data: Geo-physics, 69, 690 - 698.
[8] Mavko, G., Mukerji, T., and Dvorkin, J., 2009, The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media. Cambridge University Press, ISBN 9780521861366.
[9] Tang, X. M., Toksoz, M.N., and Cheng, C. H., 1990, Elastic wave radiation and diffraction of a piston source: Journal Acoust. Soc. Am., 87, 1894 - 1902.
[10] Wei, J. X., 2004, A physical model study of different crack densities: Journal of Geophysics and Engineering, 1(1), 70 - 76.
[1] 马汝鹏,巴晶,Carcione J. M. ,周欣,李帆. 致密油岩石纵波频散及衰减特征研究:实验观测及理论模拟*[J]. 应用地球物理, 2019, 16(1): 36-49.
[2] 郭志华,宋延杰,王超,唐晓敏. 含黄铁矿泥质砂岩电阻率频散规律实验研究与校正方法*[J]. 应用地球物理, 2019, 16(1): 50-60.
[3] 马霄一,王尚旭,赵建国,殷晗钧,赵立明. 部分饱和条件下砂岩的速度频散实验室测量和Gassmann流体替换[J]. 应用地球物理, 2018, 15(2): 188-196.
[4] 曹雪砷,陈浩,李平,贺洪斌,周吟秋,王秀明. 基于分段线性调频的宽带偶极子声源的测井方法研究[J]. 应用地球物理, 2018, 15(2): 197-207.
[5] 李欣欣,李庆春. 基于Aki公式的主动源瑞雷波频散曲线提取方法研究[J]. 应用地球物理, 2018, 15(2): 290-298.
[6] 王玲玲,魏建新,黄平,狄帮让,张福宏. 多尺度裂缝储层地震预测方法研究[J]. 应用地球物理, 2018, 15(2): 240-252.
[7] 任英俊,黄建平,雍鹏,刘梦丽,崔超,杨明伟. 窗函数交错网格有限差分算子及其优化方法[J]. 应用地球物理, 2018, 15(2): 253-260.
[8] 郭桂红,闫建萍,张智,José Badal,程建武,石双虎,马亚维. 流体饱和孔隙定向裂缝储层中地震波衰减的模拟分析[J]. 应用地球物理, 2018, 15(2): 311-317.
[9] 闫丽丽,程冰洁,徐天吉,江莹莹,马昭军,唐建明. HTI介质PS波叠前偏移及各向异性校正方法应用研究[J]. 应用地球物理, 2018, 15(1): 57-68.
[10] 王保利. 基于多道约束的槽波波至时间自动拾取方法研究[J]. 应用地球物理, 2018, 15(1): 118-124.
[11] 孙成禹,王妍妍,伍敦仕,秦效军. 基于洗牌蛙跳算法的瑞雷波非线性反演[J]. 应用地球物理, 2017, 14(4): 551-558.
[12] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[13] 钱恪然,何治亮,陈业全,刘喜武,李向阳. 各向异性富有机质页岩的岩石物理建模及脆性指数研究[J]. 应用地球物理, 2017, 14(4): 463-480.
[14] 黄威,贲放,殷长春,孟庆敏,李文杰,廖桂香,吴珊,西永在. 三维时间域航空电磁任意各向异性正演模拟[J]. 应用地球物理, 2017, 14(3): 431-440.
[15] 黄鑫,殷长春,曹晓月,刘云鹤,张博,蔡晶. 基于谱元法三维航空电磁电各向异性模拟及识别研究[J]. 应用地球物理, 2017, 14(3): 419-430.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司