APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (1): 97-108    DOI: 10.1007/s11770-013-0368-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
含洞穴地层随钻电阻率测井响应自适应hp有限元数值模拟
刘得军1,马中华1,2,邢晓楠1,李辉1,郭智勇1
1. 中国石油大学(北京)地球物理与信息工程学院,北京 102249;
2. 恒泰艾普石油天然气技术服务股份有限公司,北京 100084
Numerical simulation of LWD resistivity response of carbonate formation using self-adaptive hp-FEM
Liu De-Jun1, Ma Zhong-Hua1,2, Xing Xiao-Nan1, Li Hui1, and Guo Zhi-Yong1
1. College of Geophysics and Information Engineering, China University of Petroleum, Beijing 102249, China.
2. Land Ocean Energy Services Co., Ltd, Beijing 100084, China.
 全文: PDF (1072 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 含洞穴的碳酸盐岩地层具有强烈的非均质性及储集空间预测难度大的特点,利用随钻电阻率测井方法对井眼环境含洞穴的储层进行准确识别和划分,是当前研究的一个焦点问题。本文采用一种新型的高效和高精度自适应有限元方法(hp-FEM)模拟和分析了含洞穴地层随钻电阻率测井仪器响应。本文所提的hp-FEM与传统h-FEM相比,其结果具有网格自适应的特点,并且计算能够以指数速率收敛于较高的精度。文中数值实例采用自适应有限元方法研究了地层中洞穴的大小、洞穴距离井眼的远近和仪器发射频率改变对测井响应的影响,并提供了识别含洞穴地层的方法。研究结果可以为实际测井中遇到的各种地层洞穴的准确识别和定量评价提供理论依据。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘得军
马中华
邢晓楠
李辉
郭智勇
关键词随钻测井   高阶有限元   自适应   指数收敛   数值模拟   地层洞穴     
Abstract: Most of the carbonate formation are highly heterogeneous with cavities of different sizes, which makes the prediction of cavity-filled reservoir in carbonate rocks difficult. Large cavities in carbonate formations pose serious threat to drilling operations. Logging-while-drilling (LWD) is currently used to accurately identify and evaluate cavities in reservoirs during drilling. In this study, we use the self-adaptive hp-FEM algorithm simulate and calculate the LWD resistivity responses of fracture-cavity reservoir cavities. Compared with the traditional h-FEM method, the self-adaptive hp-FEM algorithm has the characteristics of the self-adaptive mesh refinement and the calculations exponentially converge to highly accurate solutions. Using numerical simulations, we investigated the effect of the cavity size, distance between cavity and borehole, and transmitted frequency on the LWD resistivity response. Based on the results, a method for recognizing cavities is proposed. This research can provide the theoretical basis for the accurate identification and quantitative evaluation of various carbonate reservoirs with cavities encountered in practice.
Key wordsLWD resistivity   hp-FEM   self-adaptive   exponential convergence   numerical simulation   cavity   reservoirs   
收稿日期: 2012-04-05;
基金资助:

本研究由国家自然科学基金项目(编号:41074099)资助。

引用本文:   
刘得军,马中华,邢晓楠等. 含洞穴地层随钻电阻率测井响应自适应hp有限元数值模拟[J]. 应用地球物理, 2013, 10(1): 97-108.
LIU De-Jun,MA Zhong-Hua,XING Xiao-Nan et al. Numerical simulation of LWD resistivity response of carbonate formation using self-adaptive hp-FEM[J]. APPLIED GEOPHYSICS, 2013, 10(1): 97-108.
 
[1] Chen, X., Liu, D., and Ma, Z., 2011, Numerical simulation of electric field in resistivity LWD using high accuracy self-adaptive hp-FEM: Chinese Journal of Computational Physics (in Chinese), 28(1), 50 - 56.
[2] Chimedsurong, Z., and Wang, H., 2003, Forward modeling of induction well logging tools in dipping boreholes and their response: Chinese Journal of Computational Physics (in Chinese), 20(2), 161 - 168.
[3] Demkowicz, L., 2006, Computing with hp-adaptive Finite Elements: One and two dimensional elliptic and Maxwell problems, Boca Raton: Chapman & Hall/CRC Press.
[4] Dubcova, L., Solin, P., Cerveny, J., and Kus, P., 2010, Space and time adaptive two-mesh hp-finite element method for transient microwave heating problems: Electromagnetics, 30, 23 - 40.
[5] Liu, F., Gao, J., Sun, B., Bao, D., and Yang, C., 2007, Forward calculation of the resistivity logging response through casing by transmission line equation for multi-layer formations: Chinese Journal of Geophysics (in Chinese), 50(6), 1905 - 1913.
[6] Lovell, J. R., 1993, Finite element methods in resistivity logging: Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
[7] Nie, X. C., Yuan, N., and Liu, C. R., 2010, Simulation of LWD tool response using a fast integral equation method: IEEE Transactions on Geoscience and Remote Sensing, 48(1), 72 - 81.
[8] Pardo, D., Demkowicz, L., Torres-Verdin, C., and Paszynski, M., 2007, A self-adaptive goal-oriented hp finite element method with electromagnetic applications. Part II: Electrodynamics: Computer methods in Applied Mechanics and Engineering, 196, 3585 - 3597.
[9] Solin, P., Cerveny, J., and Dolezel, I., 2008, Arbitrary-level hanging nodes and automatic adaptively in the hp-FEM: Mathematics and Computers in Simulation, 77, 117 - 132.
[10] Solin, P., Dubcova, L., Cerveny, J., and Dolezel, I., 2010, Adaptive hp-FEM with arbitrary-level hanging Nodes for Maxwell’s Equations: Advances in Applied Mathematics and Mechanics, 2(4), 518 - 532.
[11] Solin, P., Segeth, K., and Dolezel, I., 2003, Higher-order finite element methods, Boca Raton: Chapman & Hall/The Chemical Rubber Company Press, Boca Raton, USA.
[12] Tan, M. J., Gao, J., Wang, X. C., and Zhang, S. Y., 2011, Numerical simulation of the dual laterolog for carbonate cave reservoirs and response characteristics: Applied Geophysics, 8(1), 79 - 85.
[13] Vejchodsky, T., Solin, P., and Zitka, M., 2007, Modular hp-FEM system HERMES and its application to the Maxwell’s equations: Mathematics and Computers in Simulation, 76, 223 - 228.
[14] Xing, G., and Yang, S., 2004, On response functions of the electromagnetic propagation resistivity logging and its investigating characteristics: Well Logging Technology (in Chinese), 28(4), 281 - 284.
[15] Zhang, Z., Mu, L., Zhang, X., Li, F., and Wang, Z., 2011, Application of vector finite element method to simulate logging-while-drilling resistivity tools: Journal of China University of Petroleum (Edition of Natural Science), 35(4), 64 - 71.
[1] 胡隽,曹俊兴,何晓燕,王权锋,徐彬. 水力压裂对断层应力场扰动的数值模拟[J]. 应用地球物理, 2018, 15(3-4): 367-381.
[2] 康正明,柯式镇,李新,米金泰,倪卫宁,李铭宇. 随钻多模式电阻率成像测井仪响应的三维有限元数值模拟[J]. 应用地球物理, 2018, 15(3-4): 401-412.
[3] 戴世坤,赵东东,张钱江,李昆,陈轻蕊,王旭龙. 基于泊松方程的空间波数混合域重力异常三维数值模拟[J]. 应用地球物理, 2018, 15(3-4): 513-523.
[4] 徐凯军,孙洁. 基于自适应有限元的2.5D海洋可控源电磁场激电效应特征研究[J]. 应用地球物理, 2018, 15(2): 332-341.
[5] 张博,殷长春,刘云鹤,任秀艳,齐彦福,蔡晶. 双船拖曳式海洋电磁三维自适应正演模拟及响应特征研究[J]. 应用地球物理, 2018, 15(1): 11-25.
[6] 张代磊,黄大年,于平,袁园. 基于平移不变量小波的全张量重力梯度数据滤波[J]. 应用地球物理, 2017, 14(4): 606-619.
[7] 胡松,李军,郭洪波,王昌学. 水平井随钻电磁波测井与双侧向测井响应差异及其解释应用[J]. 应用地球物理, 2017, 14(3): 351-362.
[8] 杨思通,魏久传,程久龙,施龙青,文志杰. 煤巷三维槽波全波场数值模拟与波场特征分析[J]. 应用地球物理, 2016, 13(4): 621-630.
[9] 付博烨,符力耘,魏伟,张艳. 超声岩石物理实验尾波观测中边界反射的影响分析[J]. 应用地球物理, 2016, 13(4): 667-682.
[10] 陶蓓,陈德华,何晓,王秀明. 界面不规则性对套后超声波成像测井响应影响的模拟研究[J]. 应用地球物理, 2016, 13(4): 683-688.
[11] 常江浩,于景邨,刘志新. 煤矿老空水全空间瞬变电磁响应三维数值模拟及应用[J]. 应用地球物理, 2016, 13(3): 539-552.
[12] 张钱江,戴世坤,陈龙伟,强建科,李昆,赵东东. 基于网格加密-收缩的2.5D直流电法有限元模拟[J]. 应用地球物理, 2016, 13(2): 257-266.
[13] 刘洋, 李向阳, 陈双全. 高精度双吸收边界条件在地震波场模拟中的应用[J]. 应用地球物理, 2015, 12(1): 111-119.
[14] Cho, Kwang-Hyun. 爆炸与天然地震的区别[J]. 应用地球物理, 2014, 11(4): 429-436.
[15] 叶益信, 李予国, 邓居智, 李泽林. 激发极化法2.5维自适应有限元正演模拟[J]. 应用地球物理, 2014, 11(4): 500-507.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司