APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (1): 88-96    DOI: 10.1007/s11770- 013-0371-7
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
利用支持向量分类(SVC)估算断层深度和特征选择
Mohammad Ehsan Hekmatian1,2, Vahid E. Ardestani3, Mohammad Ali Riahi3, Ayyub Memar Koucheh Bagh2, and Jalal Amini4
1. Faculty of Basic Sciences of Science and Research Branch, Islamic Azad University, Tehran, Iran.
2. Nuclear Fuel Cycle Research School of Nuclear Science & Technology Research Institute (NSTRI), Tehran, Iran.
3. Institute of Geophysics, University of Tehran, Tehran, Iran.
4. Faculty of Engineering, University of Tehran, Tehran, Iran.
Fault depth estimation using support vector classifier and features selection
Mohammad Ehsan Hekmatian1,2, Vahid E. Ardestani3, Mohammad Ali Riahi3, Ayyub Memar Koucheh Bagh2, and Jalal Amini4
1. Faculty of Basic Sciences of Science and Research Branch, Islamic Azad University, Tehran, Iran.
2. Nuclear Fuel Cycle Research School of Nuclear Science & Technology Research Institute (NSTRI), Tehran, Iran.
3. Institute of Geophysics, University of Tehran, Tehran, Iran.
4. Faculty of Engineering, University of Tehran, Tehran, Iran.
 全文: PDF (218 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地下断层深度的计算是重力解释难题之一,我们试图利用支持向量分类(SVC)法进行计算。使用正演和非线性反演技术,通过相关误差使检测地下断层深度成为可能。但必需要有一个深度初始猜测值, 而且这猜测值通常不是由重力资料得。本文我们介绍以SVC作为利用重力数据估算断层深度的一种手段。在该项研究中, 我们假设一种地下断层深度可归为一种类型, SVC作为一个分类算法。为了有效地利用此SVC算法,我们基于一个正确的特征选择算法去选择正确的深度特征。 本次研究中我们建立了一套基于不同深度地下断层的合成重力剖面训练集,用以训练用于计算实际的地下断层深度的SVC代码。然后用其它合成重力剖面训练集测试我们训练的SVC代码,同时也用实际资料验证了我们的训练SVC代码。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
Mohammad Ehsan Hekmatian
Vahid E. Ardestani
Mohammad Ali Riahi
Ayyub Memar Koucheh Bagh
and Jalal Amini
关键词深度计算   地下断裂   支持向量分类(SVC)   特征   特征选择     
Abstract: Depth estimation of subsurface faults is one of the problems in gravity interpretation. We tried using the support vector classifier (SVC) method in the estimation. Using forward and nonlinear inverse techniques, detecting the depth of subsurface faults with related error is possible but it is necessary to have an initial guess for the depth and this initial guess usually comes from non-gravity data. We introduce SVC in this paper as one of the tools for estimating the depth of subsurface faults using gravity data. We can suppose that each subsurface fault depth is a class and that SVC is a classification algorithm. To better use the SVC algorithm, we select proper depth estimation features using a proper features selection (FS) algorithm. In this research, we produce a training set consisting of synthetic gravity profiles created by subsurface faults at different depths to train the SVC code to estimate the depth of real subsurface faults. Then we test our trained SVC code by a testing set consisting of other synthetic gravity profiles created by subsurface faults at different depths. We also tested our trained SVC code using real data.
Key wordsdepth estimation   subsurface fault   support vector classifier   feature   features selection   
收稿日期: 2012-07-09;
引用本文:   
Mohammad Ehsan Hekmatian,Vahid E. Ardestani,Mohammad Ali Riahi等. 利用支持向量分类(SVC)估算断层深度和特征选择[J]. 应用地球物理, 2013, 10(1): 88-96.
Mohammad Ehsan Hekmatian,Vahid E. Ardestani,Mohammad Ali Riahi et al. Fault depth estimation using support vector classifier and features selection[J]. APPLIED GEOPHYSICS, 2013, 10(1): 88-96.
 
[1] Cortes, C., and Vapnik, V., 1995, Support vector networks: Machine Learning, 20, 273 - 297.
[2] Gret, A. A., and Klingele, E. E., 1998, Application of artificial neural networks for gravity interpretation in two dimensions: Institute of Geodesy and Photogrammetry, Swiss Federal Institute of Technology, Zurich.
[3] Hashemi, H., 2010, Logical considerations in applying pattern recognition techniques on seismic data: Precise ruling, realistic solutions: CSEG Recorder, 35, 47 - 50.
[4] Hashemi, H., Tax, D. M. J., Duin, R. P. W., Javaherian, A., and Groot, P., 2008, Gas chimney detection based on improving the performance of combined multilayer perceptron and support vector classifier: Nonlin. Processes Geophys., 15, 863 - 871.
[5] Hekmatian, M. E., 2004, Software package preparation entitled: QuantInt, to be used for quantitative interpretation of magnetic gravitational data and one sample interpretation in exploration of uranium: J. of Nuclear Sci. and Tech., 30, 37 - 48.
[6] Osman, O., Albora, A. M., and Ucan, O. N., 2006, A new approach for residual gravity anomaly profile interpretations: Forced neural network (FNN): Ann Geophys-Italy, 49, 1201 - 1208.
[7] Telford, W. M., Geldart, L. P., Sheriff, R. E., and Keys, D. A., 1976, Applied geophysics: Cambridge University Press, Cambridge.
[8] van der Baan, M. and Jutten, C., 2000, Neural networks in geophysical applications: Geophysics, 65(4), 1032 - 1047.
[9] van der Heijden, F., Duin, R. P. W., de Ridder, D., and Tax, D. M. J., 2004, Classification, parameter estimation, and state estimation: John Wiley & Sons, Ltd, Chichester, England.
[1] 孔选林,陈辉,胡治权,康佳星,徐天吉,李录明. 基于时频域极化属性的多分量地震数据面波压制方法[J]. 应用地球物理, 2018, 15(1): 99-110.
[2] 胡松,李军,郭洪波,王昌学. 水平井随钻电磁波测井与双侧向测井响应差异及其解释应用[J]. 应用地球物理, 2017, 14(3): 351-362.
[3] 宋连腾,刘忠华,周灿灿,俞军,修立军,孙中春,张海涛. 致密砂岩弹性各向异性特征及影响因素分析[J]. 应用地球物理, 2017, 14(1): 10-20.
[4] Mohamed Deriche. 基于结构属性排序的稳定的盐丘探测[J]. 应用地球物理, 2016, 13(3): 449-458.
[5] 白泽,谭茂金,张福莱. 不同激励源井地电位成像技术三维正反演方法研究[J]. 应用地球物理, 2016, 13(3): 437-448.
[6] 宋承云, 刘致宁, 蔡涵鹏, 钱峰, 胡光岷. 基于叠前纹理的储层特征和地震相分析[J]. 应用地球物理, 2016, 13(1): 69-79.
[7] 刘金钊, 柳林涛, 梁星辉, 叶周润. 利用Extrapolation Tikhonov正则化算法进行重力梯度三维密度反演[J]. 应用地球物理, 2015, 12(2): 137-146.
[8] 潘建国, 王宏斌, 李闯, 赵建国. 孔隙结构对致密碳酸盐岩地震岩石物理特征的影响分析[J]. 应用地球物理, 2015, 12(1): 1-10.
[9] 杨京辉, 王立国, 钱晋希. 基于空间-光谱特征和稀疏表达的高光谱图像分类算法[J]. 应用地球物理, 2014, 11(4): 489-499.
[10] 魏建新, 狄帮让, 丁拼博. 裂隙张开度对纵波速度与频散影响的实验研究[J]. 应用地球物理, 2013, 10(2): 125-133.
[11] 张晨, 姚长利, 谢永茂, 郑元满, 关胡良, 洪东明. 重磁数据网格化时减少失真以及提高效率的技术研究[J]. 应用地球物理, 2012, 9(4): 378-390.
[12] 陈双全, 李向阳, 王尚旭. 流体检测频变特征分析:以物理模型数据为例[J]. 应用地球物理, 2012, 9(2): 195-206.
[13] 张军华, 刘振, 朱博华, 冯德永, 张明振, 张学芳. 河流相储层特征提取及识别技术研究——以老河口工区为例[J]. 应用地球物理, 2011, 8(3): 181-188.
[14] 徐明才, 高景华, 荣立新, 王广科, 王小江. 地震方法探测太行山山前断裂的活动特征[J]. 应用地球物理, 2010, 7(4): 392-398.
[15] 陈双全, 王尚旭, 张永刚, 季敏. 应用叠前反演弹性参数进行储层预测[J]. 应用地球物理, 2009, 6(4): 375-384.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司