APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (1): 41-52    DOI: 10.1007/s11770-013-0367-3
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于混叠震源和频率组编码的频率域自适应全波形反演
韩淼1,韩立国1,刘春成2,陈宝书2
1. 吉林大学地球探测科学与技术学院,长春 130026;
2. 中海油研究总院,北京 100027
Frequency-domain auto-adapting full waveform inversion with blended source and frequency-group encoding
Han Miao1, Han Li-Guo1, Liu Chun-Cheng2, and Chen Bao-Shu2
1. College of Geo-Exploration Science and Technology, Jilin University,  Changchun 130026, China.
2. CNOOC Research Institute, Beijing 100027, China.
 全文: PDF (904 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 全波形反演是一种高精度的地震成像方法,可以对地下介质物性参数模型进行准确的重构。然而在实际应用中,尤其是在三维复杂介质反演中,计算成本太大是该方法的一个重要缺陷。将混叠震源技术引入到频率域全波形反演中可以大幅度地降低计算成本,提高反演效率。但是使用震源编码技术也带来了两个问题:一方面,参与编码的各个震源之间会产生“串扰噪声”,导致反演结果中出现假象;另一方面,基于震源编码的频率域全波形反演方法周围噪声较为敏感,使该方法对含噪数据反演质量较差。本文引入一种频率组编码方法来压制“串扰噪声”,并基于震源编码技术提出一种频率域自适应全波形反演方法,通过一个与频率相关的自适应选择机制,将常规频率域全波形反演方法和基于震源编码的全波形反演方法联合起来,在保证反演质量的同时也最大程度地提高了反演效率。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩淼
韩立国
刘春成
陈宝书
关键词全波形反演   混叠震源   频率组编码   自适应     
Abstract: As a high quality seismic imaging method, full waveform inversion (FWI) can accurately reconstruct the physical parameter model for the subsurface medium. However, application of the FWI in seismic data processing is computationally expensive, especially for the three-dimension complex medium inversion. Introducing blended source technology into the frequency-domain FWI can greatly reduce the computational burden and improve the efficiency of the inversion. However, this method has two issues: first, crosstalk noise is caused by interference between the sources involved in the encoding, resulting in an inversion result with some artifacts; second, it is more sensitive to ambient noise compared to conventional FWI, therefore noisy data results in a poor inversion. This paper introduces a frequency-group encoding method to suppress crosstalk noise, and presents a frequency-domain auto-adapting FWI based on source-encoding technology. The conventional FWI method and source-encoding based FWI method are combined using an auto-adapting mechanism. This improvement can both guarantee the quality of the inversion result and maximize the inversion efficiency.
Key wordsFull waveform inversion   Frequency-domain   Blended source   Frequency-group encoding   Auto-adapting   
收稿日期: 2012-03-15;
基金资助:

本研究由国家自然科学基金项目“深部金属矿地震探测混合震源波场模拟与联合成像”(编号:41074075/D0409)和国家科技重大专项子课题“面向深水区高精度成像的全波形反演技术研究”(编号2011ZX05025-001-04)联合资助。

引用本文:   
韩淼,韩立国,刘春成等. 基于混叠震源和频率组编码的频率域自适应全波形反演[J]. 应用地球物理, 2013, 10(1): 41-52.
HAN Miao,HAN Li-Guo,LIU Chun-Cheng et al. Frequency-domain auto-adapting full waveform inversion with blended source and frequency-group encoding[J]. APPLIED GEOPHYSICS, 2013, 10(1): 41-52.
 
[1] Ben-Hadj-Ali, H., Operto, S., and Virieux, J., 2008, Velocity model building by 3D frequency-domain, full-waveform inversion of wide-aperture seismic data: Geophysics, 73(5), VE101 - VE117.
[2] Ben-Hadj-Ali, H., Operto, S., and Virieux, J., 2009, Three-dimensional frequency-domain full waveform inversion with phase encoding: 79th Annual International Meeting, SEG, Expanded Abstracts, 2288 - 2292.
[3] Ben-Hadj-Ali, H., and Operto, S., 2011, An efficient frequency-domain full waveform inversion method using simultaneous encoded sources: Geophysics, 76(4), R109 - R124.
[4] Berkhout, A. J., Blacquiere, G., and Verschuur, D. J., 2009, The concept of double blending: Combining incoherent shooting with incoherent sensing: Geophysics, 74(4), A59 - A62.
[5] Berkhout, A. J., and Blacquiere, G., 2011, Blended Acquisition with Dispersed Source Arrays, the Next Step in Seismic Acquisition: 81st Annual International Meeting, SEG, Expanded Abstracts, 16 - 19.
[6] Blacquiere, G., and Berkhout, A. J., 2011, Double illumination in blended acquisition: 81th Annual International Meeting, SEG, Expanded Abstracts, 11 - 15.
[7] Boonyairiwat, C., and Schuster, G. T., 2010, 3D Multisource full-waveform inversion using dynamic random phase encoding: 80th Annual International Meeting, SEG, Expanded Abstracts, 1044 - 1049.
[8] Brossier, R., Operto, S., and Virieux, J., 2009, Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion: Geophysics, 74(6), WCC105 - WCC118.
[9] Brossier, R., Operto, S., and Virieux, J., 2010, Which data residual norm for robust elastic frequency-domain full waveform inversion: Geophysics, 75(3), R37 - R46.
[10] Diaz, E., and Guitton, A., 2011, Fast full waveform inversion with random shot decimation: 81th Annual International Meeting, SEG, Expanded Abstracts, 2804 - 2808.
[11] Godwin, J., and Sava, P., 2010, Blended source imaging by amplitude encoding: 80th Annual International Meeting, SEG, Expanded Abstracts, 3125 - 3129.
[12] Godwin, J., and Sava, P., 2011, A comparison of shot-encoding schemes for wave-equation migration: 81st Annual International Meeting, SEG, Expanded Abstracts, 32 - 36.
[13] Hustedt, B., Operto, S., and Virieux, J., 2004, Mixed-grid and staggered-grid finite-difference methods for frequency-domain acoustic wave modelling: Geophysical Journal International, 157(3), 1269 - 1296.
[14] Hu, J., Wang, X., and Wang, H., 2011, Frequency grouping coding scheme for blended source imaging: 81th Annual International Meeting, SEG, Expanded Abstracts, 3404 - 3408.
[15] Ikelle, L., 2007, Coding and decoding: seismic data modeling, acquisition and processing: 77th Annual International Meeting, SEG, Expanded Abstracts, 66 - 70.
[16] Krebs, J. R., Anderson, J., Hinkley, D., Neelamani, R., Lee, S., Baumstein, A., and Lacasse, M., 2009, Fast full-wavefield seismic inversion using encoded sources: Geophysics, 74(6), WCC177 - WCC188.
[17] Lailly, P., 1983, The seismic inverse problem as a sequence of before stack migration: Conference on Inverse Scattering, Theory and Application, Society for Industrial and Applied Mathematics, Expanded Abstracts, 206 - 220.
[18] Liu, F., Robert, H., Douglas, W., and Richard, S., 2002, Plane wave source composition: An accurate phase encoding scheme for prestack migration: 72nd Annual International Meeting, SEG, Expanded Abstracts, 1156 - 1159.
[19] Marfurt, K., 1984, Accuracy of finite-difference and finite-elements modeling of the scalar and elastic wave equations: Geophysics, 49(5), 533 - 549.
[20] Neelamani, R., Krohn, C. E., and Krebs, J. R., 2010, Efficient seismic forward modeling using simultaneous random sources and sparsity: Geophysics, 75(6), WB15 - WB27.
[21] Operto, S., Virieux, J., and Dessa, J. X., 2006, Crustal seismic imaging from multifold ocean bottom seismometer data by frequency domain full waveform tomography: Application to the eastern Nankai trough: Journal of Geophysical Research, 111(B9), 1978 - 2012.
[22] Operto, S., and Virieux, J., 2007, 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: A feasibility study: Geophysics, 72(5), SM195 - SM211.
[23] Pratt, R. G., Shin, C., and Hicks, G. J., 1998, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion: Geophysical Journal International, 133(2), 341 - 362.
[24] Pratt, R. G., 1999a, Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model: Geophysics, 64(3), 888 - 901.
[25] Pratt, R. G., 1999b, Seismic waveform inversion in the frequency domain, Part 2: Fault delineation in sediments using crosshole data: Geophysics, 64(3), 902 - 914.
[26] Romero, L. A., Ghiglia, D. C., Ober, C. C., and Morton, S. A., 2000, Phase encoding of shot records in prestack migration: Geophysics, 65(2), 426 - 436.
[27] Schuster, G. T., and Dai, W., 2010, Theory of Multisource Crosstalk Reduction by Phase-Encoded Statics: 80th Annual International Meeting, SEG, Expanded Abstracts, 3110 - 3114.
[28] Sirgue, L., and Pratt, R. G., 2004, Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies: Geophysics, 69(1), 231 - 248.
[29] Soubaras, R., 2006, Modulated-shot migration: 76th Annual International Meeting, SEG, Expanded Abstracts, 2430 - 2434.
[30] Tarantola, A, 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics, 49(8), 1259 - 1266.
[31] Tarantola, A, 1986, A strategy for nonlinear elastic inversion of seismic reflection data: Geophysics, 51(10), 1893 - 1903.
[32] Virieux, J., and Operto, S., 2009, An overview of full-waveform inversion in exploration geophysics: Geophysics, 74(6), WCC1 - WCC26.
[1] 王恩江,刘洋,季玉新,陈天胜,刘韬. 粘滞声波方程Q值波形反演方法研究*[J]. 应用地球物理, 2019, 16(1): 83-98.
[2] 徐凯军,孙洁. 基于自适应有限元的2.5D海洋可控源电磁场激电效应特征研究[J]. 应用地球物理, 2018, 15(2): 332-341.
[3] 张博,殷长春,刘云鹤,任秀艳,齐彦福,蔡晶. 双船拖曳式海洋电磁三维自适应正演模拟及响应特征研究[J]. 应用地球物理, 2018, 15(1): 11-25.
[4] 张代磊,黄大年,于平,袁园. 基于平移不变量小波的全张量重力梯度数据滤波[J]. 应用地球物理, 2017, 14(4): 606-619.
[5] 曲英铭,李振春,黄建平,李金丽. 棱柱波形与全波形联合反演方法[J]. 应用地球物理, 2016, 13(3): 511-518.
[6] 张钱江, 戴世坤, 陈龙伟, 李昆, 赵东东, 黄兴兴. 起伏地形条件下二维声波频率域全波形反演[J]. 应用地球物理, 2015, 12(3): 378-388.
[7] 叶益信, 李予国, 邓居智, 李泽林. 激发极化法2.5维自适应有限元正演模拟[J]. 应用地球物理, 2014, 11(4): 500-507.
[8] 赵岩, 刘洋, 任志明. 基于优化时空域高阶有限差分方法的粘滞声波叠前逆时偏移[J]. 应用地球物理, 2014, 11(1): 50-62.
[9] 陈颖频, 彭真明, 贺振华, 田琳, 张洞君. 基于自适应窗函数的最优分数域Gabor变换及其应用[J]. 应用地球物理, 2013, 10(3): 305-313.
[10] 陈海峰, 李向阳, 钱忠平, 赵桂玲. 一种稳健压制陆上三分量地震记录中面波的自适应极化分析方法[J]. 应用地球物理, 2013, 10(3): 294-304.
[11] 王义, 董良国, 刘玉柱. 一种改进的全波形反演混合迭代优化方法[J]. 应用地球物理, 2013, 10(3): 265-277.
[12] 尚帅, 韩立国, 吕庆田, 谭尘青. 自适应非局部均值地震随机噪声压制[J]. 应用地球物理, 2013, 10(1): 33-40.
[13] 刘得军, 马中华, 邢晓楠, 李辉, 郭智勇. 含洞穴地层随钻电阻率测井响应自适应hp有限元数值模拟[J]. 应用地球物理, 2013, 10(1): 97-108.
[14] 陈学华, 杨威, 贺振华, 钟文丽, 文晓涛. 三维多尺度体曲率的算法及应用[J]. 应用地球物理, 2012, 9(1): 65-72.
[15] 宋建勇, 郑晓东, 秦臻, 苏本玉. 基于多网格的频率域全波形反演[J]. 应用地球物理, 2011, 8(4): 303-310.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司